Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 1, pp 85–90 | Cite as

Thermochemical properties of hydrazinium dipicrylamine in N-methyl pyrrolidone and dimethyl sulfoxide

  • Li-Bai Xiao
  • Feng-Qi Zhao
  • Xiao-Ling Xing
  • Zhi-Ming Zhou
  • Hai-Feng Huang
  • Si-Yu Xu
  • Hong-Xu Gao
  • Er-Gang Yao
  • Qing Pei
Article

Abstract

The enthalpies of dissolution for Hydrazinium Dipicrylamine (HDPA) in N-methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) were measured using a RD496-2000 Calvet microcalorimeter at 298.15 K. Empirical formulae for the calculation of the enthalpies of dissolution (Δdiss H) were obtained from the experimental data of the dissolution processes of HDPA in NMP and DMSO. The linear relationships between the rate (k) and the amount of substance (a) were found. The corresponding kinetic equations describing the two dissolution processes were \( {{\text{d}\alpha } \mathord{\left/ {\vphantom {{\text{d}\alpha} {\text{d}t}}} \right. \kern-0pt} {\text{d}t}} = 10^{ - 2.71}\left( {1 - \alpha } \right)^{1.23} \) for the dissolution of HDPA in NMP, and \( {{\text{d}\alpha } \mathord{\left/ {\vphantom {{\text{d}\alpha} {\text{d}t}}} \right. \kern-0pt} {\text{d}t}} = 10^{ - 2.58}\left( {1 - \alpha } \right)^{0.81} \) for the dissolution of HDPA in DMSO, respectively.

Keywords

Hydrazinium dipicrylamine (HDPA) Dissolution Kinetics N-methyl pyrrolidone (NMP) Dimethyl sulfoxide (DMSO) 

Notes

Acknowledgements

This work was financially supported by the Science and Technology Foundation of the Science and Technology on Combustion and Explosion laboratory in China (Grant no. 9140C3503101103).

References

  1. 1.
    Drake G, Hawkins T, Brand A, Hall L, Mckay M, Vij A, Ismail I. Energetic, low-melting salts of simple heterocycles. Propellant Explos Pyrotech. 2003;28:174–80.CrossRefGoogle Scholar
  2. 2.
    Katritzky AR, Singh S, Kirichenko K, Holbrey JD, Smiglak M, Reichert WM, Rogers RD. 1-Butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: a novel ionic liquid containing a rigid, planar energetic anion. Chem Commun. 2005;7:868–70.CrossRefGoogle Scholar
  3. 3.
    Gao H, Joo YH, Twamley B, Zhou Z, Shreeve JM. Hypergolic ionic liquids with the 2,2-dialkyltriazanium cation. Angew Chem. 2009;121:2830–3.CrossRefGoogle Scholar
  4. 4.
    Gao H, Joo YH, Parrish DA, Vo T, Shreeve JM. 1-Amino-1-hydrazino-2,2-dinitroethene and its salts: synthesis, characterization, and thermolysis studies. Chem Eur J. 2011;17:4613–8.CrossRefGoogle Scholar
  5. 5.
    Tompa AS, Boswell RF, Skahan P, Gotzmer C. Low/high temperature relationships in dinitramide salts by DEA/DSC and study of oxidation of aluminum powders by DSC/TG. J Therm Anal Calorim. 1997;49:1161–70.CrossRefGoogle Scholar
  6. 6.
    Singh G, Srivastava P, Srivastava J. Studies on (non) energetic compounds Part 38. Kinetics of thermolysis of dichloroanilinium bromide salts. J Therm Anal Calorim. 2007;89:181–9.CrossRefGoogle Scholar
  7. 7.
    Zhao FQ, Xue L, Xing XL, Hu RZ, Zhou ZM, Gao HX, Yi JH, Xu SY, Pei Q. Thermochemical properties and thermo-kinetic behavior of energetic triazole ionic salts. Sci China Chem. 2011;54:461–7.CrossRefGoogle Scholar
  8. 8.
    Zhao FQ, Xue L, Xing XL, Zhou ZM, Wang K, Gao HX, Yi JH, Hu RZ. Thermal behavior of 3,4,5-triamino-1,2,4-triazole dinitramide. J Therm Anal Calorim. 2010;102:989–92.CrossRefGoogle Scholar
  9. 9.
    Ma HX, Yan B, Ren YH, Hu Y, Guan YL, Zhao FQ, Song JR, Hu RZ. Thermal behavior and thermal safety on 3,3-dinitroazetidinium salt of perchloric acid. J Therm Anal Calorim. 2011;103:569–75.CrossRefGoogle Scholar
  10. 10.
    Karaghiosoff K, Klapotke TM, MiroSabate C. Energetic silver salts with 5-aminotetrazole ligands. Eur J Inorg Chem. 2009;15:1164–76.Google Scholar
  11. 11.
    Fendt T, Fischer N, Klapotke TM, Stierstorfer J. N-rich salts of 2-methyl-5-nitraminotetrazole: secondary explosives with low sensitivities. Inorg Chem. 2011;50:1447–58.CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Long XP, Wang X, Shu YJ, Tian AM. Review on high-nitrogen energetic materials. Chin J Energ Mater. 2006;14:315–7.Google Scholar
  13. 13.
    Jochen K, Stefan L. Synthesis and characterization of 3,3′-azobis(6-amino-1,2,4,5-tetrazine) DAAT: a new promising nitrogen-rich compound. Propellant Explos Pyrotech. 2002;27:111–8.CrossRefGoogle Scholar
  14. 14.
    Hiskey M, Chavez D. Progress in high-nitrogen chemistry in explosives, propellants and pyrotechnics. Proc. 27th international Pyrotecnics Seminar. USA Colorado. 2001:3–14.Google Scholar
  15. 15.
    Li N, Chai CP, Gan YZ, Luo JY. Review on molecular design and performance of energetic ionic compounds. Chin J Energ Mater. 2010;18:467–74.Google Scholar
  16. 16.
    Hang HF, Meng ZH, Zhou ZM, Gao HX, Zhang Z, Wu YK. Energetic salts and energetic ionic liquids. Prog Chem. 2009;21:152–64.Google Scholar
  17. 17.
    Ye CF, Shreeve JM. Rapid and accurate estimation of densities of room-temperature ionic Liquids and salts. J Phys Chem A. 2007;111:1456–61.CrossRefGoogle Scholar
  18. 18.
    Eringathodi S, Agnihotri P, Ganguly B, Bhat P, Subramannian PS, Paul P, Ghosh PK. Towards understanding of the selective precipitation of alkali metal cations in presence of dipicrylamine anion. Eur J Inorg Chem. 2005;2005:2198–205.CrossRefGoogle Scholar
  19. 19.
    Kundu ML, Kapoor JN, Ghosh SK. Preparation and molecular configurations of some salts of dipicrylamine with organic and inorganic cations. J Chem Sci. 1982;91:65–72.Google Scholar
  20. 20.
    Huang HF, Zhou ZM, Song JH, Liang LX, Wang K, Cao D, Sun WW, Dong XM, Xue M. Energetic salts based on dipicrylamine and Its amino derivative. Chem Eur J. 2011;17:13593–602.Google Scholar
  21. 21.
    Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Comm. 1992;13:965–7.CrossRefGoogle Scholar
  22. 22.
    Kilday MV. The enthalpy of solution of SRM 1655 (KCl) in H2O. J Res Nat Bur Stand. 1980;85:467.CrossRefGoogle Scholar
  23. 23.
    Xing XL, Xue L, Zhao FQ, Gao HX, Hu RZ. Dissolution properties of 1,1-diamino-2,2-didinitrorthylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 2009;32:53–7.Google Scholar
  24. 24.
    Xing XL, Xue L, Zhao FQ, Gao HX, Pei Q, Hu RZ. Evaluating the thermal hazard of double-base propellant SQ-2 by using microcalorimetry method. Chin J Chem. 2010;28:1369–72.CrossRefGoogle Scholar
  25. 25.
    Xing XL, Xue L, Zhao FQ, Gao HX, Yi JH, Gao HX, Xu SY, Pei Q, Hao HX, Hu RZ. Dissolution properties of the CL-20 in ethyl acetate and acetone. J Therm Anal Calorim. 2010;99:703–7.CrossRefGoogle Scholar
  26. 26.
    Xue L, Zhao FQ, Xing XL, Gao HX, Xu SY, Hu RZ. Dissolution properties of 1,3,3-trinitroazetidine (TNAZ) in ethyl acetate and N,N-dimethylformamide. Acta Phys Chim Sin. 2009;25:2413–6.Google Scholar
  27. 27.
    Xue L, Zhao FQ, Xing XL, Gao HX, Xu SY, Hu RZ. Dissolution properties of 3,4-dinitrofurazanfuroxan (DNTF) in N-methyl-2-pyrrolidone and dimethyl sulfoxide. Chin J Explos Propellant. 2009;32:53–7.Google Scholar
  28. 28.
    Zhao FQ, Heng SY, Hu RZ, Gao HX, Han F. A study of kinetic behaviours of the effective centralite/stabilizer consumption reaction of propellants using a multi-temperature artificial accelerated aging test. J Hazard Mater. 2007;145:45–50.CrossRefGoogle Scholar
  29. 29.
    Albu P, Bolcu C, Vlase G, Doca N, Vlase T. Kinetics of degradation under non-isothermal conditions of a thermooxidative stabilized polyurethane. J Therm Anal Calorim. 2011;105:686–7.CrossRefGoogle Scholar
  30. 30.
    Xu KZ, Zuo XG, Zhang H, Yan B, Huang J, Ma HX, Wang BZ, Zhao FQ. Synthesis and thermal behavior of a new high-energy organic potassium salt. J Therm Anal Calorim. 2012;110:585–8.CrossRefGoogle Scholar
  31. 31.
    Yi JH, Zhao FQ, Xu SY, Zhang LY, Ren XN, Gao HX, Hu RZ. Effect of pressures on decomposition reaction kinetics of double-base propellant catalyzed with cerium citrate. J Therm Anal Calorim. 2009;92:318–21.Google Scholar
  32. 32.
    Xing XL, Zhao FQ, Ma SN, Xu SY, Xiao LB, Gao HX, Hu RZ. Thermal decomposition behavior, kinetics, and thermal hazard evaluation of CMDB propellant containing CL-20 by microcalorimetry. J Therm Anal Calorim. 2012;110:1452–4.CrossRefGoogle Scholar
  33. 33.
    Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science; 2008.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Li-Bai Xiao
    • 1
  • Feng-Qi Zhao
    • 1
  • Xiao-Ling Xing
    • 1
  • Zhi-Ming Zhou
    • 2
  • Hai-Feng Huang
    • 2
  • Si-Yu Xu
    • 1
  • Hong-Xu Gao
    • 1
  • Er-Gang Yao
    • 1
  • Qing Pei
    • 1
  1. 1.Science and Technology on Combustion and Explosion LaboratoryXi’an Modern Chemistry Research InstituteXi’anChina
  2. 2.School of Chemical Engineering and EnvironmentBeijing Institute of TechnologyBeijingChina

Personalised recommendations