Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 1, pp 451–455 | Cite as

Enthalpies of solution of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane in aqueous solution as a function of concentration and temperature

  • Yina P. Salamanca
  • Luis H. Blanco
  • Edgar F. Vargas
Article

Abstract

Solution enthalpies of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane, TATD, in water were measured as a function of molal concentration at 278.15, 288.15, 298.15, and 308.15 K. Solvation enthalpies and the heat capacity of solution were calculated. The results show a structuring of solvent around the solute and the observed temperature dependency of the enthalpy of solvation permits the classification of TATD as being a “mixed solute”. The Scaled Particle Theory was employed for analyzing the individual contributions to the solvation enthalpy.

Keywords

Tetraazaadamantane Solution enthalpy Solvation enthalpy TATD 

References

  1. 1.
    Chang S, Westrum E. Heat capacities and thermodynamic properties of globular molecules. I. Adamantane and Hexamethylenetetramine. J Phys Chem. 1960;64:1547–51.CrossRefGoogle Scholar
  2. 2.
    Maxwell GR. Synthetic nitrogen products. A practical guide to the products and processes. New York: Kluwer Academic Publishers; 2004.Google Scholar
  3. 3.
    Barone G, Crescenzi V, Liquorio A, Quadrifoglio F. Physicochemical properties of hexamethylenetetramine aqueous solutions. J Phys Chem. 1967;71:984–6.CrossRefGoogle Scholar
  4. 4.
    Quadrifoglio F, Crescenzi V, Cesaro V, Delben F. Thermodynamic data for the water-hexamethylenetetramine system. J Phys Chem. 1971;75:3633–5.CrossRefGoogle Scholar
  5. 5.
    Herrington TM, Mole EL. Apparent molar volumes, temperatures of maximum density and osmotic coefficients of dilute aqueous hexamethylenetetramine solutions. J Chem Soc Faraday Trans. 1982;78:213–23.CrossRefGoogle Scholar
  6. 6.
    Pankratov YP, Abrosimov VK. Bulk properties of solutions of Hexamethylenetetramine in D2O and H2O at different temperatures. Russ J Phys Chem. 1997;71:1263–6.Google Scholar
  7. 7.
    Tasker IR, Wood RH. Enthalpies of dilution of aqueous systems containing hexamethylenetetramine and other nonelectrolytes. J Solut Chem. 1982;11:729–47.CrossRefGoogle Scholar
  8. 8.
    Blanco LH, Vargas OM, Suárez AF. Effect of temperature on the density and surface tension of aqueous solutions of HMT. J Therm Anal Calorim. 2011;104:101–4.CrossRefGoogle Scholar
  9. 9.
    Blanco LH, Salamanca YP, Vargas EF. Enthalpies of solution in water of urotropine as function of concentration and temperature. J Therm Anal Calorim. 2011;104:209–12.CrossRefGoogle Scholar
  10. 10.
    Clavijo JA, Blanco LH. Effect of two macrocyclic aminals on the temperature of maximum density of water. J Solut Chem. 2012;41:680–9.CrossRefGoogle Scholar
  11. 11.
    Clavijo JA, Blanco LH. Apparent molal volumes of HMT and TATD in aqueous solutions around the temperature of maximum density of water. J Chem Thermodyn. 2012;45:28–34.CrossRefGoogle Scholar
  12. 12.
    Pierotti RA. A scaled particle theory of aqueous and nonaqueous solutions. Chem Rev. 1976;76:717–26.CrossRefGoogle Scholar
  13. 13.
    Franks F, Reid DS. Thermodynamic properties. In: Franks F, editor. Water: a comprehensive treatise, vol 2, chapter 5. New York: Plenum Press; 1973. p. 323–80.Google Scholar
  14. 14.
    Peori MB, Vaughan K. Synthesis and characterization of novel bis-triazenes: 3,8-di[2-aryl-1-azenyl]-1,3,6,8-tetraazabicyclo[4.4.1]undecanes and 1,3-di-2-[(4-methoxyphenyl)-1-diazenyl]imidazolidine. The reaction of diazonium ions with ethylenediamine/formaldehyde mixtures. J Org Chem. 1998;63:7437–44.CrossRefGoogle Scholar
  15. 15.
    Vargas EV, Moreno JC, Forero J, Parra DF. A versatile and high-precision solution-reaction isoperibolic calorimeter. J Therm Anal Calorim. 2008;91:659–62.CrossRefGoogle Scholar
  16. 16.
    Wadso I, Goldberg RN. Standards in isothermal microcalorimetry. Pure Appl Chem. 2001;73:1625–39.CrossRefGoogle Scholar
  17. 17.
    Archer DG, Kirklin DR. NIST and standards for calorimetry. Thermochim Acta. 2000;347:21–30.CrossRefGoogle Scholar
  18. 18.
    Haines PJ. Thermal methods of analysis, principles, applications and Problems. New York: Blackie Academic & Profesional; 1995.CrossRefGoogle Scholar
  19. 19.
    Laye PG. Differential thermal analysis and differential scanning calorimetry. In: Haines PJ, editor. Principles of thermal analysis and calorimetry, chapter 3. Cambridge: The Royal Society of Chemistry; 2002. p. 55–92.CrossRefGoogle Scholar
  20. 20.
    Taylor BN, Kuyatt CE. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Gaithersburg: National Institute of Standards and Technology; 1994.Google Scholar
  21. 21.
    Sheater SJ. A modern approach to regression with R. New York: Springer Science + Business Media; 2009.CrossRefGoogle Scholar
  22. 22.
    Kusano K, Suurkuusk J, Wadsö I. Thermochemistry of solutions of biochemical model compounds. 2. Alcoxyethanols and 1,2-dialkoxyethanes in water. J Chem Thermodyn. 1973;5:757–67.CrossRefGoogle Scholar
  23. 23.
    Franks F, Watson B. Calorimetric study of dilute aqueous solutions of dialkylamines: hydration of alkyl groups. Trans Faraday Soc. 1969;65:2339–49.CrossRefGoogle Scholar
  24. 24.
    Della Gatta G, Badea E, Józwiak M, Barone G. Hydrophobic—hydrophilic solvation of variously substituted N-alkylureas in aqueous solution: a calorimetric study at temperature of 298.15 K. J Chem Eng Data. 2009;54:2739–44.CrossRefGoogle Scholar
  25. 25.
    Jasra RV, Ahluwalia JC. Enthalpies of solution, partial molal heat capacities and apparent molal volumes of sugars and polyols in water. J Solut Chem. 1982;11:325–38.Google Scholar
  26. 26.
    Barannikov VP, Guseynov SS, Vyugin AI. Enthalpies of solvation of 1,4,7,10,13,16-hexaoxacyclooctadecane in solvents. J Chem Thermodyn. 2004;36:277–80.CrossRefGoogle Scholar
  27. 27.
    Senda N. The development of Winmostar, a GUI software for computational chemistry. Idemitsugihou. 2006;49:106–11.Google Scholar
  28. 28.
    Likhodi O, Chalikian TV. Partial molar volumes and adiabatic compressibilities of a series of aliphatic amino acids and oligoglycines in D2O. J Am Chem Soc. 1999;121:1156–63.CrossRefGoogle Scholar
  29. 29.
    Kell GS. Isothermal compressibility of liquid water at 1 atm. J Chem Eng Data. 1970;15:119–22.CrossRefGoogle Scholar
  30. 30.
    Graziano G. Solvation thermodynamics of xenon in n-alkanes, n-alcohols and water. Biophys Chem. 2003;105:371–82.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Yina P. Salamanca
    • 1
    • 2
  • Luis H. Blanco
    • 1
  • Edgar F. Vargas
    • 2
  1. 1.Laboratorio de Investigaciones Básicas, Departamento de QuímicaUniversidad Nacional de Colombia, Ciudad UniversitariaBogotá D.C.Colombia
  2. 2.Laboratorio de Termodinámica de Soluciones, Departamento de QuímicaUniversidad de Los AndesBogotá D.C.Colombia

Personalised recommendations