Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 1, pp 193–200 | Cite as

The standard molar enthalpy of formation of Ce2(MoO4)3(s) and Sm2(MoO4)3(s) using solution calorimetry

  • Smruti Dash
  • N. K. Shukla


The enthalpies of formations of Ce2(MoO4)3(s) and Sm2(MoO4)3(s) have been measured at 298.15 K using semi adiabatic solution calorimetry. The precipitation reaction between RE(NO3)3·6H2O(s) (R= Ce, Sm) and ammonical solution of Na2MoO4(s) was studied. From the enthalpy of precipitation and other required auxiliary data, \( \Updelta_{\text{f}} H_{\text{m}}^{ \circ } \left( { 2 9 8. 1 5 {\text{ K}}} \right) \) of Ce2(MoO4)3(s) and Sm2(MoO4)3(s) have been calculated for the first time as −4388.7 ± 3.6 and −4363.4 ± 4.1 kJ mol−1, respectively. The enthalpy of hydration of anhydrous Ce(NO3)3(s) to Ce(NO3)3·6H2O(s) has been calculated. \( \Updelta_{\text{f}} H_{\text{m}}^{ \circ } \left( {{\text{MoO4}}^{ 2- } ,\,{\text{aq}},\, 2 9 8. 1 5 \,{\text{K}}} \right) \) has also been measured and calculated as −995.1 kJ mol−1 from required literature data.


Samarium molybdate Cerium molybdate Enthalpy of formation Solution calorimeter Precipitation reaction Enthalpy of hydration 



The authors are thankful to Shri S. G. Kulkarni, Head, Product Development Division, Dr. K. L. Ramakumar, Director Radiochemistry and Isotope Group, for their keen interest in this study. The authors are also thankful to Dr. K. Krishnan of Fuel Chemistry Division for XRD analysis.


  1. 1.
    Ponomarev BK, Zhukov A. Magnetic and magnetoelectric properties of rare earth molybdates. Phys Res Int. 2012; Article ID 276348:1–22.Google Scholar
  2. 2.
    Sumithra S, Umarji AM. Negative thermal expansion in rare earth molybdates. Solid State Sci. 2006;8:1453–8.CrossRefGoogle Scholar
  3. 3.
    Ponomarev BK, Red’Kin BS, Stiep E, Wiegelmann H, Jansen AGM, Wyder P. Magnetoelectric effect in samarium molybdate. Phys Solid State. 2002;44:145–8.CrossRefGoogle Scholar
  4. 4.
    Brixner LH, Barkley Jr, Jeitschko W. Rare-earth molybdates (VI). In: Gschneidner Jr AK, Eyring L, editors. Handbook on the physics and chemistry of rare earths, chapter 30. New York: North-Holland Publishing Company; 1979. p. 610–55.Google Scholar
  5. 5.
    CPDFWIN, JCPDS-ICDD, Version 2.2, 2001.Google Scholar
  6. 6.
    NBS Tech. Note, Washington D.C., April (1973) p. 270.Google Scholar
  7. 7.
    Venugopal V, Shukla NK, Sundaresh V, Roy KN, Prasad R. Sood386 DD. Thermochemistry of caesium iodide and caesium chromate. J Chem Thermodyn. 1986;18:735–8.CrossRefGoogle Scholar
  8. 8.
    O’Hare PAG, Jensen KJ, Hoekstra HR. Thermochemistry of molybdates IV. Standard enthalpy of formation of lithium molybdate, thermodynamic properties of the aqueous molybdate ion, and thermodynamic stabilities of the alkali-metal molybdates. J Chem Thermodyn. 1974;6:681–91.CrossRefGoogle Scholar
  9. 9.
    Kubaschewski O, Alcock CB, Spencer PJ. Materials thermochemistry. 6th ed. New York: Pergamon; 1993.Google Scholar
  10. 10.
    Shukla NK, Prasad R, Sood DD. The standard molar enthalpies of formation at the temperature T = 298.15 K of barium molybdate BaMoO4(cr) and strontium molybdate SrMoO4(cr). J Chem Therm. 1993;25:429–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Product Development Division, Radiochemistry and Isotope GroupBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations