Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 1, pp 321–327 | Cite as

Thermal studies of chitin–chitosan derivatives

  • Fernanda Stuani Pereira
  • Deuber Lincon da Silva Agostini
  • Aldo Eloizo Job
  • Eduardo René Pérez González


New poly(azo) amino-chitosan compounds were obtained from the azo coupling reaction of N-benzyl chitosan and diazonium salts. The thermal behavior of these compounds was studied by thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), TG coupled with a Fourier-transform infrared, and differential scanning calorimetry (DSC). TG/DTG curves of chitin–chitosan polymer showed two thermal events attributed to water loss and decomposition of the polysaccharide after cross-linking reactions. Thermal analysis of the poly(azo) amino-chitosan compounds showed that the decomposition temperatures decreased when compared to the starting chitin–chitosan and N-benzyl chitosan. DSC results showed an agreement with the TG/DTG analyses. Thermal behavior of poly(azo) amino-chitosans suggest that these compounds could be considered as potential thermal sensors.


Chitin–chitosan biopolymer N-alkylation Azo compounds TG/DTG and DSC 



The authors gratefully thank Fundação de Apoio a Pesquisa do Estado de São Paulo (FAPESP), Programa de Pós-graduação em Ciência e Tecnologia de Materiais (POSMAT), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and post-graduation fellowship.


  1. 1.
    Kurita K. Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnol. 2006;8:203–26.CrossRefGoogle Scholar
  2. 2.
    Riva R, Ragelle H, des Rieux A, Duhem N, Jerome C, Preat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. In: Jayakumar RPMMRAA, editor. Chitosan for biomaterials II. Advances in polymer science, 2011. p. 19–44.Google Scholar
  3. 3.
    Devlieghere F, Vermeulen A, Debevere J. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004;21:703–14.CrossRefGoogle Scholar
  4. 4.
    Hussein MHM, El-Hady MF, Sayed WM, Hefni H. Preparation of some chitosan heavy metal complexes and study of its properties. Polym Sci Ser A. 2012;54:113–24.CrossRefGoogle Scholar
  5. 5.
    Landl M, Šimon P, Breza M. Synthesis and spectra of tris(4-dimethylaminophenyl)divinylenes. Dyes Pigm. 1999;40:43–51.CrossRefGoogle Scholar
  6. 6.
    Gopalakrishnan S, Nevaditha NT, Mythili CV. Antibacterial activity of azo compounds synthesized from the natural renewable source, cardanol. J Chem Pharm Res. 2011;3:490–7.Google Scholar
  7. 7.
    Manickasundaram S, Kannan P, Hassan QMA, Palanisamy PK. Azo dye based poly(alkyloxymethacrylate)s and their spacer effect on optical data storage. J Mater Sci. 2008;19:1045–53.Google Scholar
  8. 8.
    Hong Y-G, Gu J-D. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Appl Microbiol Biotechnol. 2010;88:637–43.CrossRefGoogle Scholar
  9. 9.
    Khalid MN, Agnely F, Yagoubi N, Grossiord JL, Couarraze G. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci. 2002;15:425–32.CrossRefGoogle Scholar
  10. 10.
    Cardenas G, Bernal L, Tagle LH. Thermogravimetric studies of chitosan derivatives. Thermochim Acta. 1992;195:33–8.CrossRefGoogle Scholar
  11. 11.
    VIII Congresso Brasileiro de Análise Térmica e Calorimetria. III Congresso Pan-Americano de Análise Térmica e Calorimetria. 01–04 April, 2012, Campos do Jordão, São Paulo, Brazil.Google Scholar
  12. 12.
    Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001;42:3569–80.CrossRefGoogle Scholar
  13. 13.
    Borch RF, Bernstei Md, Durst HD. Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc. 1971;93:2897–904.CrossRefGoogle Scholar
  14. 14.
    Langhals H. Color chemistry. Synthesis, properties and applications of organic dyes and pigments, 3rd revised edition. Heinrich Zollinger. Angewandte Chemie International Edition. 2004;43:5291–2.Google Scholar
  15. 15.
    Kim S. Chitin, chitosan, oligosaccharides and their derivatives, biological activities and applications. USA: CRC Press; 2011. p. 149–66.Google Scholar
  16. 16.
    Zawadzki J, Kaczmarek H. Thermal treatment of chitosan in various conditions. Carbohydr Polym. 2010;80:394–400.CrossRefGoogle Scholar
  17. 17.
    López FA, Mercê ALR, Alguacil FJ, López-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.CrossRefGoogle Scholar
  18. 18.
    Tang WJ, Wang CX, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87:389–94.CrossRefGoogle Scholar
  19. 19.
    Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;409:95–7.CrossRefGoogle Scholar
  20. 20.
    Sajomsang W, Tantayanon S, Tangpasuthadol V, Thatte M, William H, Daly HW. Synthesis and characterization of N-aryl chitosan derivatives. Int J Biol Macromol. 2008;43:79–87.CrossRefGoogle Scholar
  21. 21.
    Zeng L, Qin C, Wang L, Li W. Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym. 2011;83:1553–7.CrossRefGoogle Scholar
  22. 22.
    Koll P, Borchers G, Metzger JO. Thermal degradation of chitin and cellulose. J Anal Appl Pyrol. 1991;19:119–29.CrossRefGoogle Scholar
  23. 23.
    Guinesi LS, Cavalheiro ETG. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta. 2006;444:128–33.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Fernanda Stuani Pereira
    • 1
    • 3
  • Deuber Lincon da Silva Agostini
    • 2
    • 3
  • Aldo Eloizo Job
    • 2
  • Eduardo René Pérez González
    • 1
  1. 1.Laboratório de Química Orgânica Fina, Departamento de Física, Química e BiologiaUniversidade Estadual Paulista, Campus de Presidente PrudentePresidente PrudenteBrazil
  2. 2.Laboratório de Análises Térmicas, Departamento de Física, Química e BiologiaUniversidade Estadual PaulistaPresidente PrudenteBrazil
  3. 3.Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (POSMAT)Universidade Estadual PaulistaSão PauloBrazil

Personalised recommendations