Skip to main content
Log in

Magnesium boride sintered as high-energy fuel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Boron was chosen as fuel owing to its excellent thermodynamic values for combustion. The difficulty of the boron in combustion is the formation of a surface oxide layer, which postpones the combustion process, reducing the performance of the rocket engine. In this paper, magnesium boride was sintered as high-energy fuel as a substitute for boron. The combustion heat and efficiency of magnesium boride and boron were determined using oxygen bomb calorimeter. The combustion characteristics of magnesium boride were investigated by thermal analysis, chemical analysis, XRD, and EDS. Results show that the combustion performance of magnesium boride are better than that of amorphous boron in oxygenated environments. The evaporation of magnesium in magnesium boride combustion process prevent the formation of a closed oxide layer, leading to higher combustion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. King MK. Ignition and combustion of boron particles and clouds. J Spacecraft. 1982;19:294–306.

    Article  CAS  Google Scholar 

  2. Kuo KK. Combustion of boron-based solid propellants and solid fuels. Boca Raton: CRC Press; 1993.

    Google Scholar 

  3. Liu TK, Luh SP, Perng HC. Effect of boron particles surface coating on combustion of solid propellants for ducted rockets. Propellants, Explos, Pyrotech. 1991;16:156–66.

    Article  CAS  Google Scholar 

  4. Yeh CL. Ignition and combustion of boron particles. The Pennsylvania State University, Ph.D Thesis; 1995.

  5. Hsia H. Air-augmented combustion of boron and boron-metal alloys. Air Force Research Lab, Final Rept, AFR DL-TR-71-80; 1971.

  6. Mestwerdt R, Selzer H. Experimental investigation of boron/lithium combustion. AIAA J. 1975;14:100–2.

    Article  Google Scholar 

  7. Schoenitz M, Drezin EL, Shtessel E. Constant volume explosions of aerosols of metallic mechanical alloys and powder blends. J Propuls Power. 2003;19:405–12.

    Article  CAS  Google Scholar 

  8. Mota JM, Abenojar J, Martinez MA, Velasco F, Criado AJ. Borides and vitreous compounds sintered as high-energy fuels. J Solid State Chem. 2004;177:619–27.

    Article  CAS  Google Scholar 

  9. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410:63–4.

    Article  CAS  Google Scholar 

  10. Chądzyński GW, Staszczuk P, Sternik D, Blachnio M. Studies of physico-chemical properties and fractal dimensions of MgB2 superconductor surface. J Therm Anal Calorim. 2012;108:985–9.

    Article  Google Scholar 

  11. Yan SC, Yan G, Liu CF, Lu YF, Zhou L. Experimental study on the phase formation for the Mg-B system in Ar atmosphere. J Alloys Compd. 2007;437:298–301.

    Article  CAS  Google Scholar 

  12. Lee S. Crystal growth of MgB2. Physica C. 2003;385:31–41.

    Article  CAS  Google Scholar 

  13. Fan ZY, Hinks DG, Newman N, Rowell JM. Experimental study of MgB2 decomposition. Appl Phys Lett. 2001;79:87–9.

    Article  CAS  Google Scholar 

  14. Brutti S, Ciccioli A, Balducci G, Gigli G. Vaporization thermodynamics of MgB2 and MgB4. Appl Phys Lett. 2002;80:2892–4.

    Article  CAS  Google Scholar 

  15. Brutti S, Balducci G, Gigli G, Ciccioli A, Manfrinetti P, Palenzona A. Thermodynamic and kinetic aspects of decomposition of MgB2 in vacuum: implication for optimization of synthesis conditions. J Cryst Growth. 2006;289:578–86.

    Article  CAS  Google Scholar 

  16. Spear KE. Phase diagrams of binary Mg-alloys. Materials Park, Ohio: ASM International; 1988.

  17. Liu ZK, Zhong Y, Schlom DG, Xi XX, Li Q. Computational thermodynamic modeling of the Mg-B system. Calphad. 2001;25:299–303.

    Article  CAS  Google Scholar 

  18. Liu ZK, Schlom DG, Li Q, Xi XX. Thermodynamics of the Mg-B system: implications for the decomposition of MgB2 thin films. Appl Phys Lett. 2001;78:3678–80.

    Article  CAS  Google Scholar 

  19. Moiseev GK, Ivanovskii AL. Thermodynamic properties and thermal stability of magnesium borides. Inorg Mater. 2005;41:1061–6.

    Article  CAS  Google Scholar 

  20. Kim S, Stone DS, Cho JI, Kang CS, Bae JC. Phase stability determination of the Mg-B binary system using the CAPHAD method and ab initio calculations. J Alloys Compd. 2009;470:85–9.

    Article  CAS  Google Scholar 

  21. Balducci G, Brutti S, Ciccioli A, Gigli G, Manfrinetti P, Palenzona A, Butman MF, Kudin L. Thermodynamics of the intermediate phases in the Mg-B system. J Phys Chem Solids. 2005;66:292–7.

    Article  CAS  Google Scholar 

  22. Üçyıldız A, Girgin İ. Controlled synthesis, characterization and thermal properties of Mg2B2O5. Cent Eur J Chem. 2010;8:758–65.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of National University of Defense Technology (NUDT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Zhang, W., Zhou, X. et al. Magnesium boride sintered as high-energy fuel. J Therm Anal Calorim 113, 787–791 (2013). https://doi.org/10.1007/s10973-012-2832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2832-2

Keywords

Navigation