Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 971–976 | Cite as

Molar heat capacity and thermodynamic properties of crystalline Eu(C2H5O2N)2Cl3·3H2O

  • X.-C. Lv
  • Z.-C. Tan
  • X.-H. Gao
  • L.-X. Sun


A complex of europium hydrochloric acid coordinated with 2-aminoacetic acid (C2H5O2N), Eu(C2H5O2N)2Cl3·3H2O was synthesized and characterized by IR and elements analysis. The heat capacities of the complex was measured with an automatic adiabatic calorimeter, and the thermodynamic functions [H T − H 298.15] and [S T − S 298.15] were derived in the temperature range from 80 to 340 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scan calorimeter (DSC).


Eu(C2H5O2N)2Cl3·3H2Adiabatic calorimetry Low-temperature heat capacity Thermal analysis 



This work was financially supported by the National Nature Science Foundation of China under the grant NSFC No 21103078, 21003069, 21073189.


  1. 1.
    Anghileri LJ. On the antitumor activity of gallium and lanthanides. Arzneim Forsch. 1975;25:793–5.Google Scholar
  2. 2.
    McCarthy GJ. Rare earths in modern science and technology, vol. 2. New York: Plenum press; 1980. p. 25–105.CrossRefGoogle Scholar
  3. 3.
    Glowiak T, Legendziewicz J, Huskowska E, Gawryszewska P. Ligand chirality effect on the structure and its spectroscopic consequences in [Ln2(Ala)4(H2O)8](ClO4)6. Polyhedron. 1996;15:2939–47.CrossRefGoogle Scholar
  4. 4.
    Takada J, Nishimura K, Akaboshi M, Matsubara T, Katayama Y, Koyama M. Element content in a number of plant leaves and accumulation of some elements in typical plant species. J Radioanal Nucl Chem. 1997;217:65–9.CrossRefGoogle Scholar
  5. 5.
    Xu H, Chen L. Study on the complex site of l-tyrosine with rare-earth element Eu3+. Spectrochim Acta A. 2003;59:657–62.CrossRefGoogle Scholar
  6. 6.
    Wu J, Chen SP, Di YY, Gao SL. Low-temperature thermodynamics of Ln(Me2dtc)3(C12H8N2) (Me2dtc = dimethyldithiocarbamate, Ln = La, Pr, Nd, Sm). J Therm Anal Calorim. 2010;100:1091–8.CrossRefGoogle Scholar
  7. 7.
    Zhang H, Feng J, Zhu W. Rare-earth element distribution characteristics of biological chains in rare-earth element-high background regions and their implications. Biol Trace Elem Res. 2000;73:19–27.CrossRefGoogle Scholar
  8. 8.
    Rzączyńska Z, Danczowska-Burdon A. Thermal and spectroscopic studies of sodium and light lanthanide (III) complexes with 2,4-pyridinedicarboxylate anion. J Therm Anal Calorim. 2012;108:991–9.CrossRefGoogle Scholar
  9. 9.
    Liu BP, Lv XC, Tan ZC, Zhang ZH, Shi Q, Yang LN, Xing J, Sun LX, Zhang T. Molar heat capacity and thermodynamic properties of crystalline Ho(Asp)Cl2·6H2O. J Therm Anal Calorim. 2007;89:283–7.CrossRefGoogle Scholar
  10. 10.
    Lv XC, Tan ZC, Gao XH. Thermodynamic properties and molar heat capacity of Er2(Asp)2(Im)8(ClO4)6·10H2O. J Therm Anal Calorim. 2011;103:1119–24.CrossRefGoogle Scholar
  11. 11.
    Lv XC, Tan ZC, Gao XH. Molar heat capacities, thermodynamic properties, and thermal stability of Lu(C2H5O2N)2Cl3·3H2O. J Chem Eng Data. 2011;56:1383–7.CrossRefGoogle Scholar
  12. 12.
    Aristov YI, Kovalevskaya YA, Tokarev MM, Paukov IE. Low temperature heat capacity of the system “silica gel–calcium chloride–water”. J Therm Anal Calorim. 2011;103:773–8.CrossRefGoogle Scholar
  13. 13.
    Jin TZ, Sun XD, Xu GX, Ma ZS, Shi NC. Research on rare earth complexes with amino acid III. J Chin Rare Earths Soc. 1990;8:193–6.Google Scholar
  14. 14.
    Zeng JL, Yu SB, Tong B, Sun LX, Tan ZC. Heat capacities and thermodynamic properties of (S)-tert-butyl 1-phenylethylcarbamate. J Therm Anal Calorim. 2011;103:1087–93.CrossRefGoogle Scholar
  15. 15.
    Zeng JL, Yu SB, Cao Z, Yang DW, Sun LX. Synthesize, crystal structure, heat capacities and thermodynamic properties of a potential enantioselective catalyst. J Therm Anal Calorim. 2011;105:961–8.CrossRefGoogle Scholar
  16. 16.
    Lv XC, Gao XH, Tan ZC. Molar heat capacity and thermodynamic properties of 1, 2-cyclohexane dicarboxylic anhydride [C8H10O3]. J Therm Anal Calorim. 2008;92:523–7.CrossRefGoogle Scholar
  17. 17.
    Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–52.CrossRefGoogle Scholar
  18. 18.
    Moeller T. Inorganic chemistry, a morder introduction. New York: Wiley; 1982.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceLiaoning Shihua UniversityFushunChina
  2. 2.Division of Energy Storage, Dalian National Laboratory for Clean Energy LaboratoryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  3. 3.Thermochemistry LaboratoryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  4. 4.Materials and Thermochemistry LaboratoryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina

Personalised recommendations