Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 615–621 | Cite as

Experimental analysis on nano scale flash powder composition in fireworks manufacturing



The flash powder composition is used in the fireworks industry to manufacture the firecrackers which consist of potassium nitrate, aluminium and sulphur in 75 μm range. This study focuses on the synthesis of nano and micro flash powders with different trials of composition. The particle sizes of the nanochemicals are 142.8, 93.10 and 91.28 nm for KNO3, Al and S, respectively. The nano flash powder is mixed with micron flash powder in different ratios to manufacture the crackers and thus the noise level for the crackers are found. Thermal analysis was conducted in differential thermal and thermo gravimetric analyser. Also, impact sensitivity and friction sensitivity of the nano flash powder are analysed. The nano flash powder shows low ignition temperature compared to micron and also has high mechanical sensitivity. Fire crackers which contains one gram of 100 % nano flash powder emits the threshold noise level of 125 dB(AI) in spite of 4 g of 10 % nano flash powder for the same composition.


Nano flash powder Cake bomb Noise level Impact sensitivity Friction sensitivity 


  1. 1.
    Firecrackers Shimizu T. The art, science and technique. 3rd ed. Tokyo: Pyrotechnica Publications, Maruzen Co; 1996.Google Scholar
  2. 2.
    Ghosh KN. The principles of firecrackers. 2nd ed. Chennai: Economic Enterprises; 1981.Google Scholar
  3. 3.
    Conkling J. Chemistry of pyrotechnics: basic principles and theory. New York: Taylor & Francis; 1985.Google Scholar
  4. 4.
    Sivaprakasam SP, Surianarayanan M, Nagaraj P, Venkataratnam GS. Impact sensitiveness analysis of pyrotechnic flash compositions. J Pyrotech. 2005;21:51–8.Google Scholar
  5. 5.
    Sivaprakasam SP, Surianarayanan M. Interrelation between impact, friction and thermal energy in a pyrotechnic flash reaction. J Pyrotech. 2006;23:51–6.Google Scholar
  6. 6.
    Jeyarajendran A, Thanulingam TL. Sound level analysis of firecrackers. J Pyrotech. 2008;27:60–76.Google Scholar
  7. 7.
    Thanulingam TL. Hazard assessment and effect of nano-sized oxidizer on sound level analysis of firecrackers. J Pyrotech. 2009;28:95–111.Google Scholar
  8. 8.
    Azhagurajan A, Selvakumar N, Thanulingam TL. Thermal and sensitivity analysis of nano aluminium powder for firework application. J Therm Anal Calorim. 2011;105(1):259–67.CrossRefGoogle Scholar
  9. 9.
    Azhagurajan A, Selvakumar N, Jeyakumar Sriram. Flame analysis of micro and nano flash powder for firework applications. J Pyrotech. 2011;30(2):11–21.Google Scholar
  10. 10.
    Azhagurajan A, Selvakumar N, Mohammed Yasin M. Minimum ignition energy for micro and nano flash powders. Process Saf Prog. 2012;31(1):19–23.CrossRefGoogle Scholar
  11. 11.
    Pandey M, Jha S, Kumar R, Mishra S, Jha R. The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts. J Therm Anal Calorim. 2012;107(1):135–40.CrossRefGoogle Scholar
  12. 12.
    Iliyas A, Hawboldt K, Khan F. Kinetics and safety analysis of sulfide mineral self-heating part 1. Kinetics and safety analysis of sulfide mineral self-heating part 1. Therm Anal Calorim. 2011;106(1):53–61.CrossRefGoogle Scholar
  13. 13.
    Trache D, Khimeche K, Benziane M Dahmani A. Solid–liquid phase equilibria for binary mixtures of propellant’s stabilizers. J Therm Anal Calorm (2012). Online 2 July 2012.Google Scholar
  14. 14.
    Veedhi S, Sawant A. Designing a safer process for the reaction of TFA with sodium borohydride in THF by calorimetric technique. J Therm Anal Calorm (2012). Online 2 July 2012.Google Scholar
  15. 15.
    Sorescu M, Tianhong X. Particle size effects on the thermal behavior of hematite. J Therm Anal Calorim. 2012;107(2):463–9.CrossRefGoogle Scholar
  16. 16.
    da Cunha ALC, Lemos MS, Meth S, Gonçalves JP, Dweck J. A study of the particle size effect on the pozzolanic activity of an equilibrium catalyst. J Therm Anal Calorm. 2011;106(3):805–9.CrossRefGoogle Scholar
  17. 17.
    Wu H-C, Chang R-C, Hsiao H-C. Research in minimum ignition energy for nano Titanium powder and nano iron powder. J Loss Prev Process Ind. 2009;22(1):21–4.CrossRefGoogle Scholar
  18. 18.
    Zhao QQ, Boxman A, Chowdhry U. Nanotechnology in the chemical industry—opportunities and challenges. J Nanopart Res. 2003;5:567–72.CrossRefGoogle Scholar
  19. 19.
    Sarawadekar RG, Agrawal JP. Nanomaterials in pyrotechnics. Defence Sci J. 2008;58(4):486–95.Google Scholar
  20. 20.
    Bingyou J, Baiquan L, Shulei S, Chuanjie Z, Wenxia L. Explosive characteristics of nanometer and micrometer aluminum-powder.Min. Sci. Tech (China). 2011;21:661–6.CrossRefGoogle Scholar
  21. 21.
    Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem Soc. 2011. doi: 10.1016/j.jscs.2011.05.009.
  22. 22.
    Pivkina A, Streletskii A, Kolbanev I, Ul’yanova P, Frolov YU, Butyagin P. Mechanochemically activated nano-aluminium: oxidation behaviour. J Mater Sci. 2004;39:5451–3.CrossRefGoogle Scholar
  23. 23.
    Pivkina A, Ivanov D, Yu F, Mudretsova S, Nickolskaya A, Schoonma J. Plasma synthesized nano-aluminum powders Structure, thermal properties and combustion behaviour. J Therm Anal Calorim. 2006;86(3):733–8.CrossRefGoogle Scholar
  24. 24.
    Granier JJ, Plantier KB, Pantoya ML. The role of the Al2O3 passivation shell surrounding nano-Al particles in the combustion synthesis of NiAl. J Mater Sci. 2004;39:6421–31.CrossRefGoogle Scholar
  25. 25.
    Wharton R, Harding J. An experimental comparison of three documented methods for the evaluation of friction sensitiveness. J Energ Mater. 1993;11:51–65.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMepco Schlenk Engineering CollegeSivakasiIndia
  2. 2.Department of Mechanical EngineeringMepco Schlenk Engineering CollegeSivakasiIndia
  3. 3.BGR Energy System LtdChennaiIndia

Personalised recommendations