Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 569–578 | Cite as

Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels

  • E. Granada
  • P. Eguía
  • J. A. Comesaña
  • D. Patiño
  • J. Porteiro
  • J. L. Miguez


The basic pyrolysis behaviour of eight different biomass fuels has been tested in a thermogravimetric analyser under dynamic conditions (5, 20 and 50 °C min−1 heating rates) from room temperature up to 1,000 °C. Their decomposition was successfully modelled by three first-order independent parallel reactions, describing the degradation of hemicellulose, cellulose and lignin. Hemicellulose would be the easiest one to pyrolyse, while lignin would be the most difficult one. Experimental and calculated results show good agreement. The reactivity of the different biomass type functions of various thermal, kinetic and composition parameters are discussed. The effect of the heating rate on pyrolysis behaviour was studied, and a comparison between slow and fast heating rate reveals a small displacement of the DTG profiles to higher temperatures. The heating rate not only affects the highest mass loss rate temperature but also influences the mass loss rate value.


Biomass Thermogravimetric analysis Pyrolysis 

List of symbols



Activation energy (kJ mol−1)


Lower heating value in wet basis (MJ kg−1)


Rate constant (min−1)


Frequency factor (min−1)


Actual sample mass (mg)


Initial sample mass (mg)


Relative char yield (mg)


Reaction order (–)


Universal gas constant, 8.3145 (J mol−1 °C−1)


Temperature (°C)

Greek letters


Converted fraction (–)


Bulk density (kg m−3)


Density of the particle (kg m−3)



The authors acknowledge financial support through the project REN 2006-14793-C03-01/ALT from the Directorate General for Research at the Spanish Ministry of Education and Science and also the Project 2008-DPI-003303-PR UD 2007 from the Directorate General for Research in the Xunta de Galicia.


  1. 1.
    AçIkalIn K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim. 2011;105(1):145–50.CrossRefGoogle Scholar
  2. 2.
    Ahmed I, Jangsawang W, Gupta AK. Energy recovery from pyrolysis and gasification of mangrove. Appl Energy. 2012;91(1):173–9.CrossRefGoogle Scholar
  3. 3.
    Huang Y, et al. Biomass fuelled trigeneration system in selected buildings. Energy Convers Manag. 2011;52(6):2448–54.CrossRefGoogle Scholar
  4. 4.
    Mothé CG, De Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97(2):661–5.CrossRefGoogle Scholar
  5. 5.
    Nguyen TDB, et al. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed. Energy Convers Manag. 2012;54(1):100–12.CrossRefGoogle Scholar
  6. 6.
    Yoon HC, Pozivil P, Steinfeld A. Thermogravimetric pyrolysis and gasification of lignocellulosic biomass and kinetic summative law for parallel reactions with cellulose, xylan, and lignin. Energy Fuels. 2012;26(1):357–64.CrossRefGoogle Scholar
  7. 7.
    European Commission. Renewable energy: progressing towards the 2020 target. January 2011.Google Scholar
  8. 8.
    I.D.A.E., P.E.R. (Plan de Energias Renovables 2011–2020).Google Scholar
  9. 9.
    Aboulkas A, El Harfi K, El Bouadili A. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energy Convers Manag. 2008;49(12):3666–71.CrossRefGoogle Scholar
  10. 10.
    Grønli MG, Várhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41(17):4201–8.CrossRefGoogle Scholar
  11. 11.
    Lapuerta M, Hernández JJ, Rodríguez J. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy. 2004;27(4):385–91.CrossRefGoogle Scholar
  12. 12.
    Seo DK, et al. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2010;89(1):66–73.CrossRefGoogle Scholar
  13. 13.
    Tonbul Y. Pyrolysis of pistachio shell as a biomass. J Therm Anal Calorim. 2008;91(2):641–7.CrossRefGoogle Scholar
  14. 14.
    Vamvuka D, et al. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel. 2003;82(15–17):1949–60.CrossRefGoogle Scholar
  15. 15.
    Wilson L, et al. Thermal characterization of tropical biomass feedstocks. Energy Convers Manag. 2011;52(1):191–8.CrossRefGoogle Scholar
  16. 16.
    Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. 2004;45(5):651–71.CrossRefGoogle Scholar
  17. 17.
    Poskrobko S, Kró D. Biofuels. Part II. Thermogravimetric research of dry decomposition. J Therm Anal Calorim. 2012;109(2):629–38.CrossRefGoogle Scholar
  18. 18.
    Dos Reis OrsiniR, et al. Thermoanalytical study of inner and outer residue of coffee harvest: applications on biomass. J Therm Anal Calorim. 2011;106(3):741–5.CrossRefGoogle Scholar
  19. 19.
    Stenseng M, Jensen A, Dam-Johansen K. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J Anal Appl Pyrolysis. 2001;58–59:765–80.CrossRefGoogle Scholar
  20. 20.
    Yang H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.CrossRefGoogle Scholar
  21. 21.
    Yang H, et al. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 2006;20(1):388–93.CrossRefGoogle Scholar
  22. 22.
    Liu Q, et al. Interactions of biomass components during pyrolysis: a TG–FTIR study. J Anal Appl Pyrolysis. 2011;90(2):213–8.CrossRefGoogle Scholar
  23. 23.
    Caballero JA, et al. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis. 1997;42(2):159–75.CrossRefGoogle Scholar
  24. 24.
    Biagini E. Energy and material recovery by thermal treatments of biomasses and wastes (co-combustion, pyrolysis and gasification). Pisa: Università di Pisa; 2002.Google Scholar
  25. 25.
    Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88(1):87–97.CrossRefGoogle Scholar
  26. 26.
    Chouchene A, et al. Thermal degradation of olive solid waste: influence of particle size and oxygen concentration. Res Conserv Recycl. 2010;54(5):271–7.CrossRefGoogle Scholar
  27. 27.
    Encinar JM, et al. Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy. 1996;11(5):397–409.CrossRefGoogle Scholar
  28. 28.
    Taylor RP, Hodge BK, James CA. Estimating uncertainty in thermal systems analysis and design. Appl Therm Eng. 1999;19(1):51–73.CrossRefGoogle Scholar
  29. 29.
    Clarke DD, et al. Sensitivity and uncertainty analysis of heat-exchanger designs to physical properties estimation. Appl Therm Eng. 2001;21(10):993–1017.CrossRefGoogle Scholar
  30. 30.
    Verma SP, Andaverde J, Santoyo E. Application of the error propagation theory in estimates of static formation temperatures in geothermal and petroleum boreholes. Energy Convers Manag. 2006;47(20):3659–71.CrossRefGoogle Scholar
  31. 31.
    Chen HX, et al. Smoothing and differentiation of thermogravimetric data of biomass materials. J Therm Anal Calorim. 2004;78(3):1029–41.Google Scholar
  32. 32.
    Hamming RW. Digital filters. 2nd ed. Englewood Cliffs: Prentice-Hall; 1983.Google Scholar
  33. 33.
    Caballero JA, Conesa JA. Mathematical considerations for nonisothermal kinetics in thermal decomposition. J Anal Appl Pyrolysis. 2005;73(1):85–100.CrossRefGoogle Scholar
  34. 34.
    Várhegyi G. Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrolysis. 2007;79(1–2 SPEC. ISS.):278–88.CrossRefGoogle Scholar
  35. 35.
    Conesa JA, et al. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J Anal Appl Pyrolysis. 2001;58–59:617–33.CrossRefGoogle Scholar
  36. 36.
    Várhegyi G, et al. Least squares criteria for the kinetic evaluation of thermoanalytical experiments. Examples from a char reactivity study. J Anal Appl Pyrolysis. 2001;57(2):203–22.CrossRefGoogle Scholar
  37. 37.
    Grønli M, Antal M Jr, Várhegyi G. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res. 1999;38(6):2238–44.CrossRefGoogle Scholar
  38. 38.
    Kastanaki E, et al. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Proces Technol. 2002;77–78:159–66.CrossRefGoogle Scholar
  39. 39.
    Helsen L, Van Den Bulck E. Kinetics of the low-temperature pyrolysis of chromated copper arsenate-treated wood. J Anal Appl Pyrolysis. 2000;53(1):51–79.CrossRefGoogle Scholar
  40. 40.
    Yilgin M, Deveci Duranay N, Pehlivan D. Co-pyrolysis of lignite and sugar beet pulp. Energy Conver Manag. 2010;51(5):1060–4.CrossRefGoogle Scholar
  41. 41.
    Grammelis P, et al. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel. 2009;88(1):195–205.CrossRefGoogle Scholar
  42. 42.
    Zhaosheng Y, Xiaoqian M. Kinetic studies on catalytic combustion of rice and wheat straw under air- and oxygen-enriched atmospheres, by using thermogravimetric analysis. Biomass Bioenergy. 2008;32(11):1046–55.CrossRefGoogle Scholar
  43. 43.
    Meesri C, Moghtaderi B. Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes. Biomass Bioenergy. 2002;23(1):55–66.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • E. Granada
    • 1
  • P. Eguía
    • 1
  • J. A. Comesaña
    • 1
  • D. Patiño
    • 1
  • J. Porteiro
    • 1
  • J. L. Miguez
    • 1
  1. 1.E.T.S. Ingenieros IndustrialesUniversidad de VigoVigoSpain

Personalised recommendations