Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 1, pp 353–358 | Cite as

Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids

  • Sergey P. Verevkin
  • Ricardas V. Ralys
  • Vladimir N. Emel’yanenko
  • Dzmitry H. Zaitsau
  • Christoph Schick


We applied DSC for the determination of enthalpies of synthesis reactions of pyridinium- and pyrrolidinium-based ionic liquids (ILs) from pyridine (or N-methyl-pyrrolidine) and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of enthalpies of the formation and vaporization enthalpies of ILs.


Ionic liquids Differential scanning calorimetry First-principles calculations Enthalpy of reaction Enthalpy of formation Enthalpy of vaporization 



This study was supported by the German Science Foundation (DFG) in the frame of the priority program SPP 1191 “Ionic Liquids”.

Supplementary material

10973_2012_2725_MOESM1_ESM.doc (150 kb)
Supplementary material 1 (DOC 150 kb)


  1. 1.
    Verevkin SP, Emelyanenko VN, Zaitsau DZ, Ralys RV, Schick CH. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies. J Phys Chem B. 2012;116:4276–85.CrossRefGoogle Scholar
  2. 2.
    Paulechka YU. Heat capacity of room-temperature ionic liquids: a critical review. J Phys Chem Ref Data. 2010;39(3):1–033108.CrossRefGoogle Scholar
  3. 3.
    Paulechka YU, Kabo AG, Blokhin AV. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids. J Phys Chem B. 2009;113:14742–6.CrossRefGoogle Scholar
  4. 4.
    Holbrey JD, Reichert WM, Reddy RG, Rogers RD. In: Rogers RD, Seddon KR, editors. Ionic liquids as green solvents: progress and prospects. ACS Symposium Series, vol 856. New York: American Chemical Society; 2003.Google Scholar
  5. 5.
    Frisch MJ, et al. Gaussian 09. Pittsburgh: Gaussian, Inc.; 2009.Google Scholar
  6. 6.
    Emel’yanenko VN, Verevkin SP, Heintz A. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J Am Chem Soc. 2007;129:3930–7.CrossRefGoogle Scholar
  7. 7.
    Montgomery JA, Frisch MJ Jr, Ochterski JW, Petersson GA. A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys. 2000;112:6532–42.CrossRefGoogle Scholar
  8. 8.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA. Gaussian-3 theory using reduced Møller–Plesset order. J Chem Phys. 1999;110:4703–9.CrossRefGoogle Scholar
  9. 9.
    McQuarrie DA. Statistical mechanics. New York: Harper & Row; 1976.Google Scholar
  10. 10.
    Verevkin SP, Zaitsau Dz, Emel’yanenko VN, Ralys RV, Schick Ch, Geppert-Rybczyńska M, Jayaramanb S, Maginn EJ. Benchmark values: thermochemistry of the ionic liquid [C4Py][Cl]. Aust J Chem. 2012, accepted.Google Scholar
  11. 11.
    Glasser L, Jenkins HDB. Lattice energies and unit cell volumes of complex ionic solids. J Am Chem Soc. 2000;122:632–8.CrossRefGoogle Scholar
  12. 12.
    Slattery J, Daguenet C, Dyson P, Krossing I, Weingärtner H, Oleinikova A. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc. 2006;128:13427–34.CrossRefGoogle Scholar
  13. 13.
    Glasser L, von Szentpály L. Born–Haber–Fajans cycle generalized: linear energy relation between molecules, crystals, and metals. J Am Chem Soc. 2006;128:12314–21.CrossRefGoogle Scholar
  14. 14.
    Ohlinger WS, Klunzinger PE, Deppmeier BJ, Hehre WJH. Efficient calculation of heats of formation. J Phys Chem A. 2009;113:2165–75.CrossRefGoogle Scholar
  15. 15.
    Hubbard WN, Frow FR, Waddington G. The heats of combustion and formation of pyridine and hippuric acid. J Phys Chem. 1961;65:1326–8.CrossRefGoogle Scholar
  16. 16.
    Wadso I. Heats of vaporization of organic compounds II. Chlorides, bromides, and iodides. Acta Chem Scand. 1968;22:2438–44.CrossRefGoogle Scholar
  17. 17.
    Emel’yanenko VN, Verevkin SP, Heintz A, Schick C. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies. J Phys Chem B. 2008;112:8095–8.CrossRefGoogle Scholar
  18. 18.
    Shehatta I. Heat capacity at constant pressure of some halogen compounds. Thermochim Acta. 1993;213:1–10.CrossRefGoogle Scholar
  19. 19.
    Blokhin AV, Shaplov AS, Lozinskaya EI, Vygodskii YaS. Thermodynamic properties of 1-alkyl-3-methylimidazolium bromide ionic liquids. J Chem Thermodyn. 2007;39(1):158–66.CrossRefGoogle Scholar
  20. 20.
    Kabo GJ, Paulechka YU, Kabo AG, Blokhin AV. Experimental determination of enthalpy of 1-butyl-3-methylimidazolium iodide synthesis and prediction of enthalpies of formation for imidazolium ionic liquids. J Chem Thermodyn. 2010;42:1292–7.CrossRefGoogle Scholar
  21. 21.
    Emel’yanenko VN, Verevkin SP, Heintz A, Corfield JA, Deyko A, Lovelock KRJ, Licence P, Jones RG. Pyrrolidinium-based ionic liquids. 1-Butyl-1-methyl pyrrolidinium dicyanoamide: thermochemical measurement, mass spectrometry, and ab initio calculations. J Phys Chem B. 2008;112:11734–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Sergey P. Verevkin
    • 1
    • 3
  • Ricardas V. Ralys
    • 1
  • Vladimir N. Emel’yanenko
    • 1
  • Dzmitry H. Zaitsau
    • 1
  • Christoph Schick
    • 2
    • 3
  1. 1.Department of Physical ChemistryUniversity of RostockRostockGermany
  2. 2.Department of PhysicsUniversity of RostockRostockGermany
  3. 3.Department “Life, Light and Matter”, Faculty of Interdisciplinary ResearchUniversity of RostockRostockGermany

Personalised recommendations