Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 609–613 | Cite as

Magnetocaloric properties of La0.6Ca0.4MnO3



A theoretic work on magnetocaloric properties of the polycrystalline La0.6Ca0.4MnO3 system near a second-order phase transition from a ferromagnetic to a paramagnetic state is presented. The value of the magnetocaloric effect has been determined from the calculation of magnetization as a function of temperature under different external magnetic field shifts. The magnetic entropy change ∆S M reaches a peak of about 3 J kg−1 K−1 at 266 K upon 1.60 KA/m applied field variation. The ∆S M distribution is much more uniform than that of gadolinium, which is desirable for an Ericson-cycle magnetic refrigerator, which is beneficial for the household application of active magnetic refrigerant materials.


La0.6Ca0.4MnO3 Magnetocaloric effect Model Magnetic entropy change Heat capacity change 


  1. 1.
    Oliveira NA, Ranke PJ. Theoretical aspects of the magnetocaloric effect. Phys Rep. 2010;489:89.CrossRefGoogle Scholar
  2. 2.
    Gschneidner KA, Pecharsky VK, Tsoko AO. Recent developments in magnetocaloric materials. Rep Prog Phys. 2005;68:1479–539.CrossRefGoogle Scholar
  3. 3.
    Szymczak R, Czepelak M, Kolano R, Burian AK, Krzymanska B, Szymczak H. Magnetocaloric effect in La1– x Ca x MnO3 for x = 0.3, 0.35, and 0.4. J Mater Sci. 2008;43:1734–9.CrossRefGoogle Scholar
  4. 4.
    Hamad MA. Magneto-caloric effect in Ge0.95Mn0.05 films. J Supercond Nov Magn. 2012. doi: 10.1007/s10948-012-1762-3.Google Scholar
  5. 5.
    Hamad MA. Magnetocaloric effect in polycrystalline Gd1-xCaxBaCo2O5.5. Mater Lett. 2012;82:181–3.CrossRefGoogle Scholar
  6. 6.
    Hamad MA. Calculation on electrocaloric properties of ferroelectric SrBi2Ta2O9. Ph Transitions. 2012;85:159–68.CrossRefGoogle Scholar
  7. 7.
    Hamad MA. Investigations on electrocaloric properties of [111]-oriented 0.955PbZn1/3Nb2/3O3–0.045PbTiO3 single crystals. Ph Transitions. 2012. doi: 10.1080/01411594.2012.674527.Google Scholar
  8. 8.
    Hamad MA. Detecting giant electrocaloric effect in SrxBa1−xNb2O6 single crystals. Appl Phys Lett. 2012;100:192908.CrossRefGoogle Scholar
  9. 9.
    Hamad MA. Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 thin film. J Comput Electron. 2012. doi: 10.1007/s10825-012-0414-y.Google Scholar
  10. 10.
    Hamad MA. Prediction of energy loss of Ni0.58Zn0.42Fe2O4 nanocrystalline and Fe3O4 nanowire arrays. Jpn J Appl Phys. 2010;49:085004.CrossRefGoogle Scholar
  11. 11.
    Banerjee S, Kumar A, Devi PS. Preparation of nanoparticles of oxides by the citrate–nitrate process. J Therm Anal Calorim. 2011;104:859–67.CrossRefGoogle Scholar
  12. 12.
    Szymczak R, Czepelak M, Kolano R, Burian AK, Krzymanska B, Szymczak H. Magnetocaloric effect in La1–xCaxMnO3 for x = 0.3, 0.35, and 0.4. J Mater Sci. 2008; 43:1734–1739.Google Scholar
  13. 13.
    Hamad MA. Theoretical work on magnetocaloric effect in ceramic and sol-gel La0.67Ca0.33MnO3. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2505-1.Google Scholar
  14. 14.
    Hamad MA. Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Ph Transitions. 2012;85:106–12.CrossRefGoogle Scholar
  15. 15.
    Kumar N, Kishan H, Rao A, Awana VPS. Structural, electrical, magnetic, and thermal studies of Cr-doped La0.7Ca0.3Mn1−xCrxO3 (0 ≤ x ≤ 1) manganites. J Appl Phys. 2010;107:083905.CrossRefGoogle Scholar
  16. 16.
    Bohigas X, Tejada J, Sarrion MLM, Tripp S, Black R. Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3. J Magn Magn Mater. 2000;208(1–2):85–92.CrossRefGoogle Scholar
  17. 17.
    Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev. 1955;100:564.CrossRefGoogle Scholar
  18. 18.
    Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B. 1998;57:3478.CrossRefGoogle Scholar
  19. 19.
    Pecharsky VK, Gschneidner KA. Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater. 1999;200:44–56.CrossRefGoogle Scholar
  20. 20.
    Bohigas X, Tejada J, Barco E, Zhang XX, Sales M. Tunable magnetocaloric effect in ceramic perovskites. Appl Phys Lett. 1998;73:390.CrossRefGoogle Scholar
  21. 21.
    Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D. Large magnetic entropy change in perovskite-type manganese oxides. Phys Rev Lett. 1997;78:1142.CrossRefGoogle Scholar
  22. 22.
    Radaelli PG, Cox DE, Marezio M, Cheong SW, Schiffer PE, Ramirez AP. Simultaneous structural, magnetic, and electronic transitions in La1−xCaxMnO3 with x = 0.25 and 0.50. Phys Rev Lett. 1995;75:4488.CrossRefGoogle Scholar
  23. 23.
    Kim KH, GU JY, Choi HS, Park GW, Noh TW. Frequency shifts of the internal phonon modes in La0.7Ca0.3MnO3. Phys Rev Lett. 1996;77:1877.CrossRefGoogle Scholar
  24. 24.
    Tang T, Gu KM, Cao QQ, Wang DH, Zhang SY, Du YW. Magnetocaloric properties of Ag-substituted perovskite-type manganites. J Magn Magn Mater. 2000;222:110–4.CrossRefGoogle Scholar
  25. 25.
    Phan MH, Yu SC. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater. 2007;308:325–40.CrossRefGoogle Scholar
  26. 26.
    Sun Y, Tong W, Zhang YH. Large magnetic entropy change above 300 K in La0.67Sr0.33Mn0.9Cr0.1O3. J Magn Magn Mater. 2001;232:205–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceAl-Jouf UniversitySkakaSaudi Arabia

Personalised recommendations