Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 1, pp 455–464 | Cite as

Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes

  • Ariadni Zianna
  • Stefano Vecchio
  • Maria Gdaniec
  • Agnieszka Czapik
  • Antonis Hatzidimitriou
  • Maria Lalia-Kantouri


In this study, three new zinc(II) complexes with 5-substituted salicylaldehyde ligands (X-saloH) (X = 5-chloro, 5-nitro and 5-methyl) with the general formula [Zn(X-salo)2(CH3OH)n], (n = 0 or 2) were synthesized. An octahedral geometry was found for both the complexes [Zn(5-NO2-salo)2(CH3OH)2] and [Zn(5-Cl-salo)2(CH3OH)2] by single-crystal X-ray diffraction analysis. These complexes were characterized also by spectroscopy (IR and 1H-NMR). Simultaneous TG/DTG–DTA techniques were used to analyze their thermal behavior under inert atmosphere, with particular attention to determine their thermal degradation pathways, which was found to be a multi-step decomposition accompanied by the release of the ligand molecules. Finally, the kinetic analysis of the decomposition processes was performed by applying both the isoconversional Ozawa–Flynn–Wall (OFW) and the Kissinger–Akahira–Sunose (KAS) methods.


Crystal structure TG/DTG–DTA Zinc(II) complexes Salicylaldehydes Ozawa–Flynn–Wall method Kissinger–Akahira–Sunose method 


  1. 1.
    Vallee BL, Auld DS. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzyme. Biochemistry. 1993;32(26):6493–500.CrossRefGoogle Scholar
  2. 2.
    Prasad RN, Agrawal A. Synthesis and spectroscopic studies of mixed ligand complexes of cobalt(II) with salicylaldehyde, hydroxyarylketones and beta-diketones. J Indian Chem Soc. 2006;83(1):75–7.Google Scholar
  3. 3.
    Hussain ST, Ahmad H, Atta MA, Afzal M, Saleem M. High performance liquidchromatography (HPLC), atomic absorption spectroscopy (AAS) and infrared spectroscopy determination and solvent extraction of uranium, using bis(salicylaldehyde) propylene diamine as complexing agent. J Trace Microprobe Tech. 1998;16(2):139–49.Google Scholar
  4. 4.
    Yang Y-M, Lu P-C, Zhu T-T, Liu C-H. Bis(2-formylphenolato-κ2 O, O′)iron(II). Acta Crystallogr. 2007;E63(6):m1613.Google Scholar
  5. 5.
    Wang Q, Wang D-Q. Aquabis(o-vanillinato-κ2O, O′)nickel(II). Acta Crystallogr. 2008;E64:m298.Google Scholar
  6. 6.
    Pessoa JC, Cavaco I, Correira I, Tomaz I, Duarte T, Matias PM. Oxovanadium(IV) complexes with aromatic aldehydes. J Inorg Biochem. 2000;80(1):35–9.CrossRefGoogle Scholar
  7. 7.
    Lalia-Kantouri M, Papadopoulos CD, Hatzidimitriou AG, Skoulika S. Hetero-heptanuclear (Fe–Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8Na5] 3OH·8H2O. Struct Chem. 2009;20(2):177–84.CrossRefGoogle Scholar
  8. 8.
    Lalia-Kantouri M, Dimitriadis T, Papadopoulos CD, Gdaniec M, Czapik A, Hatzidimitriou AG. Synthesis and structural characterization of iron(III) complexes with 2-hydroxyphenones. Z Anorg Allg Chem. 2009;635(13):2185–90.CrossRefGoogle Scholar
  9. 9.
    Krajnı′kova′ A, Györyova′ K, Kova′rˇova′ J, Huba′cˇkova J, Hudecova′ D, Huba′cˇkova′ J, El-Dien FN, Koman M. Thermoanalytical, spectral and biological study of 4-bromobenzoato zinc(II) complexes containing bioactive organic ligands. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2299-1.
  10. 10.
    Findora′kova′ L, Györyova′ K, Hudecova′ D, Mudronˇova′ D, Kova′rˇova′ J, Homzova′ K, Nour El-Dien FA. Thermal decomposition study and biological characterization of zinc(II) 2-chlorobenzoate complexes with bioactive ligands. J Therm Anal Calorim. 2012; doi: 10.1007/s10973-012-2275-9
  11. 11.
    Bujdošová Z, Györyová K, Kovářová J, Hudecová D, Halás L. Synthesis, biological and physicochemical properties of zinc(II) salicylate and 5-chlorosalicylate complexes with theophylline and urea. J Therm Anal Calorim. 2009;98:151–9.CrossRefGoogle Scholar
  12. 12.
    Lambi JN, Nsehyuka AT, Ebbewatt N, Cafferata LFR, Arvia AJ. Synthesis, spectral properties and thermal behaviour of zinc(II) acetylsalicylate. Thermochim Acta. 2003;398:145–51.CrossRefGoogle Scholar
  13. 13.
    Papadopoulos C, Kantiranis N, Vecchio S, Lalia-Kantouri M. Lanthanide complexes of 3-methoxy-salicylaldehyde: thermal investigation by simultaneous TG/DTG–DTA coupled with MS; Thermal decomposition kinetics. J Therm Anal Calorim. 2010;99:931–8.CrossRefGoogle Scholar
  14. 14.
    Materazzi S, Vecchio S, Wo LW, De Angelis Curtis S. Thermoanalytical studies of imidazole-substituted coordination compounds. Mn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. J Therm Anal Calorim. 2011;103:59–64.Google Scholar
  15. 15.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  16. 16.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.CrossRefGoogle Scholar
  17. 17.
    Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  18. 18.
    Akahira T, Sunose T. Paper no. 246, 1969 Research report, Trans. joint convention of four electrical institutes. Chiba Inst Technol (Sci. Technol.) 1971;16:22–31.Google Scholar
  19. 19.
    Agilent Technologies, program CrysAlis PRO ver.1.171.35. Yarnton, Oxfordshire, England. 2011.Google Scholar
  20. 20.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112–22.Google Scholar
  21. 21.
    Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr. 2003;36:1487.CrossRefGoogle Scholar
  22. 22.
    Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42.CrossRefGoogle Scholar
  23. 23.
    Silverstein RM, Bassler GC, Morvill G. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998.Google Scholar
  24. 24.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 5th ed. New York: Wiley; 1997.Google Scholar
  25. 25.
    Binil PS, Anoop MR, Suma S, Sudarsanakumar MR. Growth, spectral, and thermal characterization of 2-hydroxy-3-methoxybenzaldehyde semicarbazon. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2601-2.Google Scholar
  26. 26.
    Watanabe Y, Aritake Y, Akitsu T. Diaquabis(2,4-dichloro-6-formylphenolato)zinc(II)-bis(μ-2,4-dichloro-6-formylphenolato)bis[aqua(2,4-dichloro-6-formylphenolato)zinc(II)] (2/1). Acta Crystallogr. 2009;E65:m1640–1.Google Scholar
  27. 27.
    Chen X-M, Zhang S-H, Jin L-X, Z Liu, Yan Y. Diaquabis(2,4-dibromo-6-formylphenolato- κ2 N,N’)zinc(II). Acta Cryst. 2007; E63: m1321.Google Scholar
  28. 28.
    Dianu LM, Kriza A, Musuc AM. Synthesis, spectral characterization, and thermal behavior of mononuclear Cu(II), Co(II), Ni(II), Mn(II), and Zn(II) complexes with 5-bromosalycilaldehyde isonicotinoylhydrazone. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2578-x.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ariadni Zianna
    • 1
  • Stefano Vecchio
    • 2
  • Maria Gdaniec
    • 3
  • Agnieszka Czapik
    • 3
  • Antonis Hatzidimitriou
    • 1
  • Maria Lalia-Kantouri
    • 1
  1. 1.Laboratory of Inorganic Chemistry, Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Dipartimento S.B.A.I., SapienzaUniversità di RomaRomeItaly
  3. 3.Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations