Skip to main content
Log in

Synthesis, spectroscopic, and thermal properties of polyurethanes containing zwitterionic sulfobetaine groups

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of novel polyurethanes (PUs) containing zwitterionic sulfobetaine groups were synthesized from polycarbonatediol with alkyne groups and 3-((2-azidoethyl)dimethylammonio)propane-1-sulfonate using the copper-catalyzed 1,3-dipolar cycloaddition (click) reaction. All the polyurethanes were fully characterized by 1H NMR, Fourier transform infrared spectrometer, gel permeation chromatography, and elemental analysis; the thermal properties were investigated by thermogravimetric analysis and differential scanning calorimetry. It has been proved that the thermal stability of zwitterionic sulfobetaine functionalized polyurethanes were greater than the starting alkyne-containing polyurethane. Protein adsorption was measured and it was indicated that PUs with zwitterionic sulfobetain structure are a kind of biocompatible materials with a better anti-protein fouling property compared to the corresponding alkyne-containing polyurethanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zaldivar M, Fernández N, Peña C, Paneque M, Valentín S. Synthesis and characterization of a new semi-interpenetrating polymer network hydrogel obtained by gamma radiations. J Therm Anal Calorim. 2011;106:725–30.

    Article  CAS  Google Scholar 

  2. El-Shekeil Y, Sapuan S, Khalina A, Zainudin E, Al-Shuja’a O. Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim. 2012;109:1435–43. doi:10.1007/s10973-012-2258-x.

    Article  CAS  Google Scholar 

  3. Iqbal M, McCullough M, Harris A, Eichhorn S. Thermal conductivity of polyurethane composites containing nanometer- and micrometer-sized silver particles. J Therm Anal Calorim. 2012;108:933–8.

    Article  CAS  Google Scholar 

  4. Chen SF, Jiang SY. A new avenue to nonfouling materials. Adv Mater. 2008;20:335–8.

    Article  CAS  Google Scholar 

  5. Wu J, Lin W, Wang Z, Chen S, Chang Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir. 2012;28:7436–41.

    Article  CAS  Google Scholar 

  6. Tan J, Brash JL. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: adsorption of proteins from human plasma to copolymer/polyurethane blends. J Biomed Mater Res A. 2009;90A:196–204.

    Article  CAS  Google Scholar 

  7. Leung BO, Hitchcock AP, Brash JL, Scholl A, Doran A. An X-ray spectromicroscopy study of protein adsorption to polystyrene-poly(ethylene oxide) blends. Langmuir. 2010;26:14759–65.

    Article  CAS  Google Scholar 

  8. Chen H, Zhang YX, Li D, Hu XY, Wang L, McClung WG, Brash JL. Surfaces having dual fibrinolytic and protein resistant properties by immobilization of lysine on polyurethane through a PEG spacer. J Biomed Mater Res A. 2009;90A:940–6.

    Article  CAS  Google Scholar 

  9. Tan J, McClung WG, Brash JL. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: protein adsorption on PEO-copolymer/polyurethane blends. J Biomed Mater Res A. 2008;85A:873–80.

    Article  CAS  Google Scholar 

  10. Aldred N, Li GZ, Gao Y, Clare AS, Jiang SY. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling. 2010;26:673–83.

    Article  CAS  Google Scholar 

  11. Liu PS, Chen Q, Wu SS, Shen J, Lin SC. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Memb Sci. 2010;350:387–94.

    Article  CAS  Google Scholar 

  12. Min DY, Li ZZ, Shen JA, Lin SC. Research and synthesis of organosilicon nonthrombogenic materials containing sulfobetaine group. Colloids Surf B Biointerfaces. 2010;79:415–20.

    Article  CAS  Google Scholar 

  13. Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials. 2009;30:5892–6.

    Article  CAS  Google Scholar 

  14. Bernards MT, Cheng G, Zhang Z, Chen SF, Jiang SY. Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules. 2008;41:4216–9.

    Article  CAS  Google Scholar 

  15. Shimizu T, Goda T, Minoura N, Takai M, Ishihara K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials. 2010;31:3274–80.

    Article  CAS  Google Scholar 

  16. Matsuno R, Takami K, Ishihara K. Simple synthesis of a library of zwitterionic surfactants via michael-type addition of methacrylate and alkane thiol compounds. Langmuir. 2010;26:13028–32.

    Article  CAS  Google Scholar 

  17. Xu Y, Takai M, Ishihara K. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials. 2009;30:4930–8.

    Article  CAS  Google Scholar 

  18. Kyomoto M, Moro T, Miyaji F, Hashimoto M, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. J Biomed Mater Res A. 2009;90A:362–71.

    Article  CAS  Google Scholar 

  19. Shan B, Yan H, Shen J, Lin SC. Ozone-induced grafting of a sulfoammonium zwitterionic polymer onto low-density polyethylene film for improving hemocompatibility. J Appl Polym Sci. 2006;101:3697–703.

    Article  CAS  Google Scholar 

  20. Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC. Grafting of zwitterion from cellulose membranes via atrp for improving blood compatibility. Biomacromolecules. 2009;10:2809–16.

    Article  CAS  Google Scholar 

  21. Jiang SY, Cao ZQ. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater. 2010;22:920–32.

    Article  CAS  Google Scholar 

  22. Zhang Z, Cheng G, Carr LR, Vaisocherova H, Chen SF, Jiang SY. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials. 2008;29:4719–25.

    Article  CAS  Google Scholar 

  23. Zhang Z, Chen SF, Jiang SY. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311–5.

    Article  CAS  Google Scholar 

  24. Cheng G, Mi L, Cao ZQ, Xue H, Yu QM, Carr L, Jiang SY. Functionalizable and ultrastable zwitterionic nanogels. Langmuir. 2010;26:6883–6.

    Article  CAS  Google Scholar 

  25. Zhang Z, Chao T, Liu LY, Cheng G, Ratner BD, Jiang SY. Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed. 2009;20:1845–59.

    Article  CAS  Google Scholar 

  26. Zhang Z, Finlay JA, Wang LF, Gao Y, Callow JA, Callow ME, Jiang SY. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir. 2009;25:13516–21.

    Article  CAS  Google Scholar 

  27. Huang JJ, Xu WL. Zwitterionic monomer graft copolymerization onto polyurethane surface through a PEG spacer. Appl Surf Sci. 2010;256:3921–7.

    Article  CAS  Google Scholar 

  28. Xiao SZ, Fu N, Peckham K, Smith BD. Efficient synthesis of fluorescent squaraine rotaxane dendrimers. Org Lett. 2010;12:140–3.

    Article  CAS  Google Scholar 

  29. Wu DX, Song XH, Tang T, Zhao HY. Macromolecular brushes synthesized by “grafting from” approach based on “click chemistry” and RAFT polymerization. J Polym Sci: A. 2010;48:443–53.

    Article  CAS  Google Scholar 

  30. Joralemon MJ, O’Reilly RK, Matson JB, Nugent AK, Hawker CJ, Wooley KL. Dendrimers clicked together divergently. Macromolecules. 2005;38:5436–43.

    Article  CAS  Google Scholar 

  31. Huang J, Xu W. Efficient synthesis of zwitterionic sulfobetaine group functional polyurethanes via “click” reaction. J Appl Polym Sci. 2011;122:1251–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Major State Basic Research Development Program (973 Program) (2012CB722701), National Natural Science Foundation of China (21202127), and Scientific Research Fund of Wuhan Textile University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Gu, S., Zhang, R. et al. Synthesis, spectroscopic, and thermal properties of polyurethanes containing zwitterionic sulfobetaine groups. J Therm Anal Calorim 112, 1289–1295 (2013). https://doi.org/10.1007/s10973-012-2715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2715-6

Keywords

Navigation