Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 649–657 | Cite as

Application of simplified version of advanced isoconversional procedure in non-isothermal kinetic study

Thermal decomposition of NH4Co0.9Zn0.1PO4·H2O
  • Zhipeng Chen
  • Qian Chai
  • Sen Liao
  • Yu He
  • Yu Li
  • Wenwei Wu
  • Bin Li
Article

Abstract

The single phase NH4Co0.9Zn0.1PO4·H2O was prepared via solid-state reaction at 80 °C. Based on a simplified version of advanced isoconversional procedure, the values of activation energy E α associated with the first, second, and third stages of the thermal decomposition of NH4Co0.9Zn0.1PO4·H2O were obtained, which demonstrates that the third stage is a kinetically complex process, and the first and second stages are single-step kinetic processes and can be described by a unique kinetic triplet [E α, A, and g(α)]. The most probable reaction mechanisms of the first two stages were estimated by the comparison between experimental plots and modeled results. The values of pre-exponential factor A of the two stages were obtained on the basis of E α and the reaction mechanisms. The distributed activation energy model was applied to study the third stage. Besides, some thermodynamic functions of transition state complexes (ΔS , ΔH , and ΔG ) of the two stages were also calculated.

Keywords

NH4Co0.9Zn0.1PO4·H2Non-isothermal kinetics Thermodynamics Thermal decomposition Thermogravimetric analysis Solid-state reaction 

Notes

Acknowledgements

This study was financially supported by the Key laboratory of new processing technology for nonferrous metals and materials, Ministry of Education, Guangxi University (No. GXKFZ-02); the Guangxi Natural Scientific Foundation of China (Grant Nos. 2012GXNSFAA053019 and 0991108); and the Guangxi Science and Technology Agency Research Item of China (Grant No. 0895002–9).

Supplementary material

10973_2012_2714_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3060 kb)

References

  1. 1.
    Feng P, Bu X, Tolbert SH, Stucky GD. Syntheses and characterizations of chiral tetrahedral cobalt phosphates with zeolite ABW and related frameworks. J Am Chem Soc. 1997;119:2497–504.CrossRefGoogle Scholar
  2. 2.
    Ng HY, Harrison WTA. Monoclinic NaZnPO4-ABW, a new modification of the zeolite ABW structure type containing elliptical eight-ring channels. Microporous Mesoporous Mater. 1998;23:197–202.CrossRefGoogle Scholar
  3. 3.
    Bu X, Feng P, Gier TE, Stucky GD. Structural and chemical studies of zeolite ABW type phases: syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structure. Zeolites. 1997;19:200–8.CrossRefGoogle Scholar
  4. 4.
    Harrison WTA, Sobolev AN, Phillip MLF. Hexagonal ammonium zinc phosphate, (NH4)ZnPO4, at 10 K. Acta Crystallogr. 2001;C57:508–9.Google Scholar
  5. 5.
    Chen J, Natarajan S, Thomas JM, Jones RH, Hursthouse MB. A novel open-framework cobalt phosphate containing a tetrahedrally coordinated cobalt (II) center: CoPO4·0.5C2H10N2. Angew Chem Int Ed. 1994;33:639–40.CrossRefGoogle Scholar
  6. 6.
    Yuan HM, Chen JS, Zhu GS, Li JY, Yu JH, Yang GD, Xu RR. The first organo-templated cobalt phosphate with a zeolite topology. Inorg Chem. 2000;39:1476–9.CrossRefGoogle Scholar
  7. 7.
    Harrison WTA. [H3N(CH2)3NH3]·0.5[ZnPO4], an organically templated zincophosphate analogue of the aluminosilicate zeolite edingtonite. Acta Crystallogr. 2001;E57:m248–50.Google Scholar
  8. 8.
    Gaslain FOM, Chippindale AM. Synthesis and crystal structure of a 3-D zinc phosphate, [C5N2H14][Zn2(PO3(OH))3], containing (4.8) net sheets. C R Chim. 2005;8:521–9.CrossRefGoogle Scholar
  9. 9.
    Neeraj S, Natarajan S. A three-dimensional zeolitic zinc phosphate, [C8N5H28][Zn5(PO4)5]H2O, with thomsonite structure. J Phys Chem Solids. 2001;62:1499–505.CrossRefGoogle Scholar
  10. 10.
    Natarajan S, Neeraj S, Choudhury A, Rao CNR. Three-dimensional open-framework cobalt(II) phosphates by novel routes. Inorg Chem. 2000;39:1426–33.CrossRefGoogle Scholar
  11. 11.
    Rajic N, Logar NZ, Kaucic V. A novel open framework zincophosphate: synthesis and characterization. Zeolites. 1995;15:672–8.CrossRefGoogle Scholar
  12. 12.
    Rajic N, Gabrovsek R, Kaučič V. Dehydration behavior of some microporous zincophosphates. Thermochim Acta. 1996;278:157–64.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  14. 14.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRefGoogle Scholar
  15. 15.
    Conesa JA, Font R. Polytetrafluoroethylene decomposition in air and nitrogen. Polym Eng Sci. 2001;41:2137–47.CrossRefGoogle Scholar
  16. 16.
    Lipskis AA, Kviklis AV, Lipskene AM, Machynlis AN. Calculation of kinetic parameters of the thermal decomposition of polymers. Polym Sci USSR. 1976;18:489–95.CrossRefGoogle Scholar
  17. 17.
    Braga RM, Barros JMF, Melo DMA, Melo MAF, Aquino FdeM, Freitas JCdeO, Santiago RC. Kinetic study of template removal of MCM-41 derived from rice husk ash. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2516-y.
  18. 18.
    Costa MJF, Araujo AS, Silva EFB, Farias MF, Fernandes VJ, d’Amorim Santa-Cruz P, Pacheco JGA. Model-free kinetics applied for the removal of CTMA+ and TPA+ of the nanostructured hybrid AlMCM-41/ZSM-5 material. J Therm Anal Calorim. 2011;106:767–71.CrossRefGoogle Scholar
  19. 19.
    Silva EFB, Ribeiro MP, Coriolano ACF, Melo ACR, Santos AGD, Fernandes VJ, Araujo AS. Kinetic study of degradation of heavy oil over MCM-41. J Therm Anal Calorim. 2011;106:793–7.CrossRefGoogle Scholar
  20. 20.
    Silva EFB, Ribeiro MP, Galvão LPFC, Fernandes VJ, Araujo AS. Kinetic study of low density polyethylene degradation on the silicoaluminophospate SAPO-11. J Therm Anal Calorim. 2011;103:465–9.CrossRefGoogle Scholar
  21. 21.
    Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.CrossRefGoogle Scholar
  22. 22.
    He Y, Liao S, Chen ZP, Chai Q, Li Y, Su YY, Wu WW, Li B. Application of isoconversional calculation procedure to non-isothermal kinetics study. Part II. Thermal decomposition of NH4CuPO4·H2O. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2306-6.
  23. 23.
    Chen ZP, Chai Q, Liao S, Chen X, He Y, Li Y, Wu WW, Li B. Non-isothermal kinetic study: IV. Comparative methods to evaluate E a for thermal decomposition of KZn2(PO4)(HPO4) synthesized by a simple route. Ind Eng Chem Res. 2012;51:8985–91.CrossRefGoogle Scholar
  24. 24.
    Chen ZP, Chai Q, Liao S, He Y, Wu WW, Li B. Preparation of LiZnPO4·H2O via a novel modified method and its non-isothermal kinetics and thermodynamics of thermal decomposition. J Therm Anal Calorim. 2012;108:1235–42.CrossRefGoogle Scholar
  25. 25.
    Wu WW, Wu XH, Lai SB, Liao S. Non-isothermal kinetics of thermal decomposition of NH4ZrH(PO4)2·H2O. J Therm Anal Calorim. 2011;104:685–91.CrossRefGoogle Scholar
  26. 26.
    Wu XH, Wu WW, Li SS, Cui XM, Liao S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805–12.CrossRefGoogle Scholar
  27. 27.
    Tang WJ, Liu YW, Zhang H, Wang CX. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRefGoogle Scholar
  28. 28.
    Jiang HY, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.CrossRefGoogle Scholar
  29. 29.
    Gao Z, Amasaki I, Nakada M. A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim Acta. 2002;385:95–103.CrossRefGoogle Scholar
  30. 30.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.CrossRefGoogle Scholar
  31. 31.
    Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.CrossRefGoogle Scholar
  32. 32.
    Malek J. The kinetic-analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  33. 33.
    Šesták J. Thermodynamical properties of solids. Prague: Academia; 1984.Google Scholar
  34. 34.
    Bamford CH, Tipper CFH. Comprehensive chemical kinetics, vol 22, reactions in the solid state. Amsterdam: Elsevier Science Publication; 1980.Google Scholar
  35. 35.
    Young D. Decomposition of solids. Oxford: Pergamon Press; 1966.Google Scholar
  36. 36.
    Danvirutai C, Noisong P, Youngme S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4·H2O in nitrogen atmosphere. J Therm Anal Calorim. 2010;100:117–24.CrossRefGoogle Scholar
  37. 37.
    Boonchom B, Kongtaweelert S. Study of kinetics and thermodynamics of the dehydration reaction of AlPO4·H2O. J Therm Anal Calorim. 2010;99:531–8.CrossRefGoogle Scholar
  38. 38.
    Janković B, Mentus S, Jelić D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Physica B. 2009;404:2263–9.CrossRefGoogle Scholar
  39. 39.
    Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 2008;53:1533–8.CrossRefGoogle Scholar
  40. 40.
    Gao X, Dollimore D. The thermal decomposition of oxalates: part 26. A kinetic study of the thermal decomposition of manganese(II) oxalate dehydrate. Thermochim Acta. 1993;215:47–63.CrossRefGoogle Scholar
  41. 41.
    Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.CrossRefGoogle Scholar
  42. 42.
    Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.CrossRefGoogle Scholar
  43. 43.
    Kirtania K, Bhattacharya S. Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola. Bioresour Technol. 2012;107:476–81.CrossRefGoogle Scholar
  44. 44.
    Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:1–22.CrossRefGoogle Scholar
  45. 45.
    Miura K, Maki T. A simple method for estimating f(E) and k 0(E) in the distributed activation energy model. Energy Fuels. 1998;12:864–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Zhipeng Chen
    • 1
  • Qian Chai
    • 1
  • Sen Liao
    • 1
  • Yu He
    • 1
  • Yu Li
    • 1
  • Wenwei Wu
    • 1
  • Bin Li
    • 1
  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina

Personalised recommendations