Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 437–442 | Cite as

Analysis of thermal and oxidative stability of biodiesel from Jatropha curcas L. and beef tallow

  • Erisandro S. Silva
  • Marta M. Conceição
  • Eduardo H. S. Cavalcanti
  • Valter J. FernandesJr.
  • Ana C. D. Medeiros
  • Antonio G. Souza


The oxidation of oils and biodiesels occurs due to several factors: the quantity of double bonds and the presence of allylic and bis-allylic hydrogens. Esters (biodiesel) that have large amounts of unsaturated fatty acids are more susceptible to oxidation than saturated. The aim of this work was to analyze the thermal and oxidative stability of ethyl biodiesel from Jatropha curcas L. and beef tallow by thermogravimetric, pressure differential scanning calorimetry, and PetroOxy methods. The samples of biodiesel from beef tallow present higher oxidation stability compared to biodiesel from J. curcas. In relation to calorimetric curves of biodiesel from J. curcas and beef tallow stored by 60 days without and with antioxidant, there was verified displacement of peak temperature of the transition to higher temperatures, respectively. Just a sample of biodiesel from beef tallow stored for 60 days with 3,000 ppm of antioxidant t-butyl-hydroxyquinone was within the standard established by Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP). The biodiesel from beef tallow was more stable in terms of thermal and oxidative stability than biodiesel from J. curcas. The thermal and oxidative stability of biodiesel depends on its chemical structure; this corroborates the fact that the oils with a predominance of saturated fatty acids are more stable than the unsaturated.


Thermal and oxidative stability Jatropha curcas Beef tallow PDSC PetroOxy 



The authors thank CNPq for the financial support.


  1. 1.
    Araújo FDS, Moura CVR, Chaves MH. Caracterização do Óleo e Biodiesel de Pinhão-Manso (Jatropha curcas L.). Universidade Federal do Piauí, Teresina, Brasil. Disponível em: (2010). Accessed 12 February 2010.
  2. 2.
    Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B. Jatropha biodiesel production and use. Biomass Bioenergy. 2008;32:1063–84.CrossRefGoogle Scholar
  3. 3.
    Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev. 2005;9:363–78.CrossRefGoogle Scholar
  4. 4.
    Knothe G, Gerpen JV, Krahl J, Ramos LP. Manual do Biodiesel. Traduzido do original “The biodiesel handbook” por Luiz Pereira Ramos. São Paulo – SP: Editora Edgard Blücher; 2006.Google Scholar
  5. 5.
    Rodrigues FMG, Souza AG, Santos IMG, Bicudo TC, Silva MCD, Sinfrônio FSM, Vasconselos AFF. Antioxidative properties of hydrogenated cardanol for cotton biodiesel by PDSC and UV/Vis. J Therm Anal Calorim. 2009;97:605–9.CrossRefGoogle Scholar
  6. 6.
    Zhao H, Cao Y, Orndorff W, Cheng YH, Pan W. Thermal behaviors of soy biodiesel. J Therm Anal Calorim. 2012;109(3):1145–50.CrossRefGoogle Scholar
  7. 7.
    Conceição MM, Dantas MB, Rosenhaim R, Fernandes VJ Jr, Santos IMG, Souza AG. Evaluation of the oxidative induction time of the ethylic castor biodiesel. J Therm Anal Calorim. 2009;97:643–6.CrossRefGoogle Scholar
  8. 8.
    Dantas MB, Albuquerque AR, Soledade LEB, Queiroz N, Maia AS, Santos IMG, Souza AL, Cavalcanti EHS, Barro AK, Souza AG. Biodiesel from soybean oil, castor oil and their blends: oxidative stability by PDSC and rancimat. J Therm Anal Calorim. 2011;106(2):607–11.CrossRefGoogle Scholar
  9. 9.
    Ramalho VC, Jorge N. Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Quim Nova. 2006;29(4):755–60.CrossRefGoogle Scholar
  10. 10.
    Candeia RA, Silva MCD, Carvalho Filho JR, Brasilino MGA, Bicudo TC, Santos IMG, Souza AG. Influence of soybean biodiesel content on basic properties of biodiesel diesel blends. Fuel (Guildford). 2009;88:738–43.CrossRefGoogle Scholar
  11. 11.
    Tutunea D. Thermal investigation of biodiesel blends derived from rapeseed oil. J Therm Anal Calorim. 2012. Accessed 24 Jan 2012. doi:  10.1007/s10973-012-2213-x.
  12. 12.
    Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process Technol. 2007;88:669–77.CrossRefGoogle Scholar
  13. 13.
    Domingos AK, Saad EB, Vechiatto WWD, Wilhelm HM, Ramos LP. The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). J Braz Chem Soc. 2007;18:416–23.CrossRefGoogle Scholar
  14. 14.
    ANP. Regulamento Técnico 01/2008, Agencia Nacional de Petróleo, Gás Natural e Biocombustíveis, Disponível em: Accessed 10 March 2012.
  15. 15.
    Santos NA, Rosenhaim R, Dantas MB, Bicudo TC, Cavalcanti EHS, Barro AK, Santos IMG, Souza AG. Rheology and MT-DSC studies of the flow properties of ethyl and methyl babassu biodiesel and blends. J Therm Anal Calorim. 2011;106(2):501–6.CrossRefGoogle Scholar
  16. 16.
    Silva MCD, Da Silva LM, Santos NA, Conceicão MM, Souza AG, Dos Santos AG. Study of ethylic Babassu biodiesel properties at low temperatures. J Therm Anal Calorim. 2011;106(2):363–7.CrossRefGoogle Scholar
  17. 17.
    Oswald P, Struckmeier U, Kasper T, Kohse-hoinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR. Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters. Phys Chem A. 2007;111:4093–101.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Erisandro S. Silva
    • 1
  • Marta M. Conceição
    • 1
  • Eduardo H. S. Cavalcanti
    • 2
  • Valter J. FernandesJr.
    • 3
  • Ana C. D. Medeiros
    • 4
  • Antonio G. Souza
    • 5
  1. 1.Universidade Federal de Campina Grande, CES, Campus de CuitéCuitéBrazil
  2. 2.Instituto Nacional de TecnologiaRio de JaneiroBrazil
  3. 3.Universidade Federal do Rio Grande do NorteNatalBrazil
  4. 4.Universidade Estadual da ParaíbaCampina GrandeBrazil
  5. 5.Universidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations