Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 3, pp 1507–1513 | Cite as

Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles

  • Omid Zabihi
  • Aminreza Khodabandeh
Article

Abstract

The polythiophene nanoparticles (nano-PT) were prepared with average diameter of 20–35 nm. The nanostructurals of polythiophene were confirmed by TEM and SEM analyzes. The kinetics of the thermal degradation and thermal oxidative degradation of nano-PT were investigated by thermogravimetric analysis. Kissinger method, Flynn–Wall–Ozawa method, and advanced isoconversional method have been used to determine the activation energies of nano-PT degradation. The results showed that the thermal stability of nano-PT in pure N2 is higher than that in air atmosphere. The analyzes of the solid-state processes mechanism of nano-PT by Criado et al. method showed: the thermal degradation process of nano-PT goes to a mechanism involving second-order (F 2 mechanism); otherwise, the thermo-oxidative degradation process of nano-PT is corresponding to a phase boundary controlled reaction mechanism (R 2 mechanism).

Keywords

Polythiophene Nanoparticles Thermal degradation Solid-state mechanism Master curves 

References

  1. 1.
    Jablonski AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78–80.CrossRefGoogle Scholar
  2. 2.
    Santon AF, Polese L, Crespi MS, Ribeiro CA. Kinetic model of poly (3-hydroxybutyrate) thermal degradation from experimental non-isothermal data. J Therm Anal Calorim. 2009;96:287–91.CrossRefGoogle Scholar
  3. 3.
    Vyazovkin S, Wigh CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.CrossRefGoogle Scholar
  4. 4.
    Carrasco F, Pages P. Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym Degrad Stab. 2008;93:1000–7.CrossRefGoogle Scholar
  5. 5.
    Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim. 2012;108:1251–60.Google Scholar
  6. 6.
    Tsotsis TK. Thermo-oxidative aging of composite materials. J Compos Mater. 1995;29:410–22.CrossRefGoogle Scholar
  7. 7.
    Ocampoa C, Armelina E, Liesab F, Alemána C, Ramisc X, Iribarren JI. Application of a polythiophene derivative as anticorrosive additive for paints. Prog Org Coat. 2005;53:217–24.CrossRefGoogle Scholar
  8. 8.
    Bouguettaya M, Vedie N, Chevrot C. New conductive adhesive based on poly(3,4-ethylene dioxythiophene). Synth Met. 1999;102:1428–31.CrossRefGoogle Scholar
  9. 9.
    Zabihi O, Khodabandeh A, Mostafavi SM. Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym Degrad Stab. 2012;97:3–13.CrossRefGoogle Scholar
  10. 10.
    Tsotra P, Gatos KG, Gryshchuk O, Friedrich K. Hardener type as critical parameter for the electrical properties of epoxy resin/polyaniline blends. J Mater Sci. 2005;40:569–74.CrossRefGoogle Scholar
  11. 11.
    Jang J, Bae J, Lee K. Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer. 2005;46:3677–84.CrossRefGoogle Scholar
  12. 12.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  13. 13.
    Nunez L, Fraga F, Fraga L, Rodriguez JA. Activation energies and rate constants for an epoxy/cure agent reaction variation in peak exotherm temperature. J Therm Anal. 1996;47:743–50.CrossRefGoogle Scholar
  14. 14.
    Hatakeyama T, Quinn FX. Thermal analysis: fundamentals and applications to polymer science. London: Wiley; 1999. p. 79–80.Google Scholar
  15. 15.
    Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar
  16. 16.
    Montserrat S, Malek J, Colomer P. Thermal degradation kinetics of epoxy–anhydride resins. I. Influence of a silica filler. Thermochim Acta. 1998;313:83–95.CrossRefGoogle Scholar
  17. 17.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  18. 18.
    Ozawa T, Kato T. A simple method for estimating activation energy from derivative thermoanalytical curves and its application to thermal shrinkage of polycarbonate. J Therm Anal. 1991;37:1299–307.CrossRefGoogle Scholar
  19. 19.
    Flynn JH. Thermal analysis kinetics-problems, pitfalls and how to deal with them. J Therm Anal. 1988;34:367–81.CrossRefGoogle Scholar
  20. 20.
    Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–9.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.CrossRefGoogle Scholar
  22. 22.
    Zhang YX, Vyazovkin S. Comparative cure behavior of DGEBA and DGEBP with 4-nitro-1,2 phenylenediamine. Polymer. 2006;47:6659–63.CrossRefGoogle Scholar
  23. 23.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.CrossRefGoogle Scholar
  24. 24.
    Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.CrossRefGoogle Scholar
  25. 25.
    Criado JM, Perez-Maqueda LA, Gotor FJ, Malek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72:901–6.CrossRefGoogle Scholar
  26. 26.
    Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.CrossRefGoogle Scholar
  27. 27.
    Paterson WL. Computation of the exponential trap population integral of glow curve theory. J Comput Phys. 1971;7(1):187–90.CrossRefGoogle Scholar
  28. 28.
    Selsbo P, Ericsson I. Studies of the thermal degradation of polythiophenes by pyrolysis-gas chromatography. Polym Degrad Stab. 1996;51(1):83–92.CrossRefGoogle Scholar
  29. 29.
    Chen F, Shi G, Zhang J, Fu M. Raman spectroscopic studies on the structural changes of electro synthesized polythiophene films during the heating and cooling processes. Thin Solid Films. 2003;424(2):283–90.CrossRefGoogle Scholar
  30. 30.
    Tourillon G, Garnier F. Stability of conducting polythiophene and derivatives. J Electrochem Soc. 1983;130(10):2042–4.CrossRefGoogle Scholar
  31. 31.
    Mohammad F, Calvert PD, Billingham NC. Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull Mater Sci. 1995;18(3):255–61.CrossRefGoogle Scholar
  32. 32.
    Paik P, Kar K. High molecular weight polypropylene nanospheres: synthesis and characterization. J Appl Polym Sci. 2007;105:1133–43.CrossRefGoogle Scholar
  33. 33.
    Paik P, KarK K. High molecular weight polyethylene nanospheres: synthesis physical and mechanical properties. J Nanosci Nanotechnol. 2008;8(6):3123–35.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Young Researchers Club, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations