Skip to main content
Log in

Influence of amorphous block on the thermal behavior of well-defined block copolymers based on ε-caprolactone

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we studied the thermal characterization of block copolymers based on ε-caprolactone. The copolymers were obtained by anionic polymerization techniques, using different co-monomers such as styrene (S) and dimethylsiloxane (DMS). Synthesized copolymers were characterized by H-nuclear magnetic resonance, size exclusion chromatography, and Fourier transform infrared spectroscopy. Isothermal crystallization was performed by differential scanning calorimetry (DSC), and Avrami’s theory was employed in order to obtain kinetics parameters of interest, such as the half-life for the crystallization process (t 1/2), the bulk crystallization constant (k), and the Avrami’s exponent (n). The spherulitic growth was measured by polarized optical microscopy in order to determine the crystallization behavior. Poly(ε-caprolactone) block (PCL) crystallization was analyzed by considering the physico-chemical characteristics of the neighboring block, PS or PDMS. The chemical nature of the neighbor block in the PCL-based copolymer affects the kinetics parameters of Avrami’s equation, as can be deduced by comparing the values obtained for pure PCL and the studied block copolymers. On the other hand, the apparent thermal degradation activation energies E ad for PCL and block copolymers were determined by Ozawa’s method. The incorporation of PDMS instead of PS improves the stability of the resulting copolymer, as it was observed by thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hamley I. The physics of block copolymers. New York: Oxford University Press; 1998.

    Google Scholar 

  2. Xu Z, Zheng S. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ε-caprolactone)-block-polydimethylsiloxane-block- poly(ε-caprolactone) triblock copolymer. Polymer. 2007;21:6134–44.

    Article  Google Scholar 

  3. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials. 1992;12:292–304.

    Article  Google Scholar 

  4. Pulapura S, Kohn X. Trends in the development of bioresorbable polymers for medical applications. J Appl Biomater. 1992;6:216–50.

    Article  CAS  Google Scholar 

  5. Heuschen J, Vion J, Jêrome R. Polycaprolactone-based block copolymers. 3. Mechanical behavior of diblock copolymers of styrene and ε-caprolactone. Macromolecules. 1989;22:2446–51.

    Article  CAS  Google Scholar 

  6. Broz ME, Vander Hart DL, Broz ME, Washburn NR. Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003;24:4181–9.

    Article  CAS  Google Scholar 

  7. Contreras RJ, Carrillo M, Balsamo V, Torres C, Carrasqueño L. Estudio preliminar de la síntesis secuencial y caracterización de terpolímeros ABC basados en isopreno, estireno y ε-caprolactona. Revista Latinoamericana de Metalurgia y Materiales. 2007;1:41–51.

    Google Scholar 

  8. Ludueña LN, Alvarez VA, Vázquez A. Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A. 2007;460:121–9.

    Google Scholar 

  9. Woodruff MA, Hutmacher DW. The return of a forgotten polymer polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56.

    Article  CAS  Google Scholar 

  10. Atanase LI, Glaied O, Riess G. Crystallization kinetics of PCL tagged with well-defined positional triazole defects generated by click chemistry. Polymer. 2011;52:3074–81.

    Article  CAS  Google Scholar 

  11. Alfonso GC, Russell TP. Kinetics of crystallization in semicrystalline amorphous polymer mixtures. Macromolecules. 1986;19:1143–52.

    Article  CAS  Google Scholar 

  12. Defieuw G, Groeninckx G, Reinares G. Miscibility, crystallization and melting behaviour, and semicrystalline morphology of binary blends of polycaprolactone with poly(hydroxy ether of bisphenol A). Polymer. 1989;30:2164–9.

    Article  CAS  Google Scholar 

  13. Kuo SW, Chan SC, Chang FC. Crystallization kinetics and morphology of binary phenolic/poly(ε-caprolactone) blends. J Polym Sci. 2004;42:117–28.

    CAS  Google Scholar 

  14. Toda A, Taguchi K, Kajioka H. Growth of banded spherulites of poly(ε-caprolactone) from the blends: an examination of the modeling of spherulitic growth. Polymer. 2012;53:1765–71.

    Article  CAS  Google Scholar 

  15. Shin EJ, Jeong W, Brown HA, Koo BJ, Hedrick JL, Waymouth RM. Crystallization of cyclic polymers: synthesis and crystallizationbehavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules. 2011;8:2773–9.

    Article  Google Scholar 

  16. Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Xiong H. Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydr Polym. 2010;79:513–9.

    Article  CAS  Google Scholar 

  17. Castillo RV, Müller A, Raquez JM, Dubois P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules. 2010;43:4149–60.

    Article  CAS  Google Scholar 

  18. Chen YF, Woo EM. Isothermal crystallization kinetics and thermal behavior of poly(ε-caprolactone)/multi-walled carbon nanotube composites. Colloid Polym Sci. 2008;286:917–26.

    Article  CAS  Google Scholar 

  19. Chen H, Li L, Ou-Yang W, Hwang JC, Wong WY. Spherulitic crystallization behavior of poly(ε-caprolactone) with a wide range of molecular weight. Macromolecules. 1997;30:1718–22.

    Article  CAS  Google Scholar 

  20. Kressler J, Svoboda P, Inoue T. Influence of copolymer composition on the crystallization in PCL/SAN blends. Polymer. 1993;24:3225–33.

    Article  Google Scholar 

  21. Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M. Anionic polymerization: high vacuum techniques. J Polym Sci Part A. 2000;38:3211–34.

    Article  CAS  Google Scholar 

  22. Morton M, Fetters L. Anionic polymerization of vinyl monomers. Rubber Chem Technol. 1975;48:359–409.

    Article  CAS  Google Scholar 

  23. Uhrig D, Mays J. Experimental techniques in high-vacuum anionic polymerization. J Polym Sci Part A. 2005;43:6179–222.

    Article  CAS  Google Scholar 

  24. Bellas V, Iatrou H, Hadjichristidis N. Controlled anionic polymerization of hexamethyl cyclotrisiloxane. Model linear and miktoarm star, co- and terpolymers of dimethylsiloxane with styrene and isoprene. Macromolecules. 2000;33:6993–7.

    Article  CAS  Google Scholar 

  25. Ciolino AE, Sakellariou G, Pantazis D, Villar MA, Vallés EM, Hadjichristidis N. Synthesis and characterization of model diblock copolymers of poly(dimethylsiloxane) with poly(1,4-butadiene) or poly(ethylene). J Polym Sci Part A. 2006;44:1579–90.

    Article  CAS  Google Scholar 

  26. Kurata M, Tsunashima Y. Section VII: solution properties. In: Brandup J, Immergut EH, Grulke EA, editors. Polymer handbook. 4th ed. New York: Wiley; 1999.

    Google Scholar 

  27. Sun H, Mei L, Song C, Cui W, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27:1735–40.

    Article  CAS  Google Scholar 

  28. Lorenzo AT, Arnal ML, Albuerne J, Müller A. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    Article  CAS  Google Scholar 

  29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Ito K, Hashizuka Y, Yamashita Y. Equilibrium cyclic oligomer formation in the anionic polymerization of ε-caprolactone. Macromolecules. 1977;10:821–4.

    Article  CAS  Google Scholar 

  31. Murphy SH, Leeke GA, Jenkins MJ. A comparison of the use of FTIR spectroscopy with DSC in the characterisation of melting and crystallisation in polycaprolactone. J Therm Anal Calorim. 2012;107:669–74.

    Article  CAS  Google Scholar 

  32. Childs MA, Matlock DD, Dorgan JR, Ohno TR. Surface morphology of poly(caprolactone)-b-poly(dimethylsiloxane)-b-poly(caprolactone) copolymers: effects on protein adsorption. Biomacromolecules. 2001;2:526–37.

    Article  CAS  Google Scholar 

  33. Tang L, Sheu MS, Chu T, Huang YH. Anti-inflammatory properties of triblock siloxane copolymer-blended materials. Biomaterials. 1999;20:1365–70.

    Article  CAS  Google Scholar 

  34. Kofron W, Baclawski L. A convenient method for estimation of alkyllithium concentrations. J Org Chem. 1976;41:1879–80.

    Article  CAS  Google Scholar 

  35. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  36. Hatakeyama T, Quinn FX. Thermal analysis. Fundamentals and applications to polymer science. New York: Wiley; 1994.

    Google Scholar 

  37. Gan Z, Jian B, Zhang J. Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymer. I. Isothermal crystallization and melting behavior. J Appl Polym Sci. 1996;59:961–7.

    Article  CAS  Google Scholar 

  38. Krikorian V, Pochan D. Unusual crystallization behavior of organoclay reinforced poly(l-lactic acid) nanocomposites. Macromolecules. 2004;37:6480–91.

    Article  CAS  Google Scholar 

  39. Chen EC, Wu TM. Isothermal crystallization kinetics and thermal behavior of poly(ɛ-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab. 2007;92:1009–15.

    Article  CAS  Google Scholar 

  40. Hoffman JD, Weeks J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A. 1962;66:13–28.

    Article  Google Scholar 

  41. Hoffman JD. Role of reptation in the rate of crystallization of polyethylene fractions from the melt. Polymer. 1982;23:656–70.

    Article  CAS  Google Scholar 

  42. Mandelkern L. Crystallization kinetics of homopolymers: overall crystallization: a review. Biophys Chem. 2004;112:109–16.

    Article  CAS  Google Scholar 

  43. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.

    Article  CAS  Google Scholar 

  44. Abdellatif M, Sherald H, Girma B. Polycaprolactone/polystyrene bioblends characterized by thermogravimetry, modulated differential scanning calorimetry and infrared photoacoustic spectroscopy. Polym Degrad Stab. 2007;92:1177–85.

    Article  Google Scholar 

  45. Trujillo M, Arnal ML, Müller AJ, Mujica MA, Urbina de Navarro C, Ruelle B, Bubois P. Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer. 2012;53:832–41.

    Article  CAS  Google Scholar 

  46. Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP. Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J. 2011;47:2216–27.

    Article  CAS  Google Scholar 

  47. Sasaki T. Melting of poly(ε-caprolactone) studied by step-heating calorimetry. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2209-6.

  48. Nanaki SG, Papageorgiou GZ, Bikiaris DN. Crystallization of novel poly(ε-caprolactone)-block-poly(propylene adipate) copolymers. J Therm Anal Calorim. 2012;108:633–45.

    Article  CAS  Google Scholar 

  49. Sun J, He C, Zhuang H, Jing X, Chen X. The crystallization behavior of poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers with asymmetric block compositions. J Polym Res. 2011;18:2161–8.

    Article  CAS  Google Scholar 

  50. Pushkaraj J, Giridhar M. Degradation of polycaprolactone in supercritical fluids. Polym Degrad Stab. 2008;93:1901–8.

    Article  Google Scholar 

  51. Balsamo V, Gouveia LM. Estimation of thermodynamic and kinetic secondary nucleation parameters in poly(styrene-co-maleic anhydride)/poly(ε-caprolactone) blends. Revista Latinoamericana de Metalurgia y Materiales. 2010;31:26–34.

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and the Universidad Nacional del Sur (UNS, Argentina) for their financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario D. Ninago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninago, M.D., Satti, A.J., Ciolino, A.E. et al. Influence of amorphous block on the thermal behavior of well-defined block copolymers based on ε-caprolactone. J Therm Anal Calorim 112, 1277–1287 (2013). https://doi.org/10.1007/s10973-012-2673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2673-z

Keywords

Navigation