Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 3, pp 1515–1521 | Cite as

Thermal and quality evaluation of vegetable oils used in ruminant feed

  • Ertha Janine Lacerda de Medeiros
  • Rita de Cássia Ramos do Egypto Queiroga
  • Antônio Gouveia de Souza
  • Angela Maria Tribuzy de M. Cordeiro
  • Ariosvaldo Nunes de Medeiros
  • Darklê Luiza de Souza
  • Marta Suely Madruga
Article

Abstract

Dairies add fat supplements to the diets of small ruminants to increase energy production and consequently the production and quality nutritional and sensorial of the milk. This study investigated the thermal and oxidative stability of babassu, castor, faveleira, and sesame oils by TG/DTA and PDSC. The profile of the fatty oils studied was determined by GC–MS as well as physicochemical characteristics. The thermogravimetric profile of the oils indicated that mass loss was caused by the decomposition or volatility of the triacylglycerides. Faveleira and sesame oils showed a high percentage of polyunsaturated fatty acids, especially C18:2. From a nutritional standpoint, unsaturated oils are more suitable supplements for animals because they promote biochemical changes beneficial to human health.

Keywords

Vegetable oils Fatty acids Thermal analysis PDSC 

Notes

Acknowledgements

The National Council for Scientific and Technological Development (CNPq) provided financial support, and the Foundation for Research Support of the State of Amazonas (FAPEAM) granted the scholarship. The food chemistry laboratories of the Department of Nutrition, Laboratory of Food Science, Department of Food Engineering, and the Laboratory of Fuels and Materials (LACOM), both of the Federal University of Paraíba, João Pessoa, PB, provided research support.

References

  1. 1.
    Queiroga RCRE, Maia MO, Medeiros AN, Costa RG, Pereira RAG, Bomfim MAD. Produção e composição química do leite de cabras mestiças Moxotó sob a suplementação com óleo de licuri ou de mamona. Rev Bras Zootec. 2010;39:204–9.CrossRefGoogle Scholar
  2. 2.
    Chouinard PY, Corneau L, Butler WR, Chilliard Y, Drackley JK, Bauman DE. Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. J Dairy Sci. 2001;84:680–90.CrossRefGoogle Scholar
  3. 3.
    Bernard L, Shingdfield KJ, Rouel J, Ferlay A, Chilliard Y. Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage. Br J Nutr. 2009;101:213–24.CrossRefGoogle Scholar
  4. 4.
    Santos JCO, Dantas JP, Medeiros CA, Athaíde-Filho PF, Conceição MM, Santos JR Jr, Souza AG. Thermal analysis in sustainable development—thermoanalytical study of faveleira seeds (Cnidoscolus Quercifolius). J Therm Anal Calorim. 2005;79:271–5.CrossRefGoogle Scholar
  5. 5.
    Berman P, Nizri S, Wiesman Z. Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenerg. 2011;35:2861–6.CrossRefGoogle Scholar
  6. 6.
    Santos NA, Rosenhaim R, Dantas MB, Bicudo TC, Cavalcanti EHS, Barro AK, Santos IMG, Souza AG. Rheology and MT-DSC studies of the flow properties of ethyl and methyl Babassu biodiesel and blends. J Therm Anal Calorim. 2011;106(2):501–6. doi: 10.1007/s10973-011-1394-z.CrossRefGoogle Scholar
  7. 7.
    Santos NA, Tavares MLA, Rosenhaim R, Silva FC, Fernandes VJ, Santos IMG, Souza AG. Thermogravimetric and calorimetric evaluation of Babassu biodiesel obtained by the methanol route. J Therm Anal Calorim. 2007;87:649–52.CrossRefGoogle Scholar
  8. 8.
    Uzun B, Arslan C, Karhan M, Toker C. Fat and fatty acids of white lupin (Lupinus albus L.) in comparison to sesame (Sesamum indicum L.). Food Chem. 2007;102:45–9.CrossRefGoogle Scholar
  9. 9.
    Suja KP, Abraham JT, Thamizh SN, Jayalekshmy A, Arumughan C. Antioxidant efficacy of sesame cake extract in vegetable oil protection. Food Chem. 2004;84:393–400.CrossRefGoogle Scholar
  10. 10.
    López-Beceiro J, Artiaga R, Gracia C, Tarrío-Saavedra J, Naya S, Mier JL. Comparison of olive, corn, soybean and sunflower oils by PDSC. J Therm Anal Calorim. 2011;104:169–75.CrossRefGoogle Scholar
  11. 11.
    Santos JCO, Santos IMG, Conceição MM, Porto SL, Trindade MFS, Souza AG, Prasad S, Fernandes VJ Jr, Araújo AS. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J Therm Anal Calorim. 2004;75:419–28.CrossRefGoogle Scholar
  12. 12.
    Sharma BK, Stipanovic AJ. Development of a new oxidation stability test method for lubrificating oils using high-pressure differential scanning calorimetry. Thermochim Acta. 2003;402:1.CrossRefGoogle Scholar
  13. 13.
    AOAC. Association of official analytical chemists. Official methods of analysis. Washington, DC: AOAC; 2000. p. 1018.Google Scholar
  14. 14.
    AOCS. Official methods and recommended practices of the American Oil Chemists’ Society. 6th ed. Champaign: American Oil Chemists Society; 2009.Google Scholar
  15. 15.
    Norma D445 American Society of Testing and Materials. Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). West Conshohocken: ASTM International; 2003.Google Scholar
  16. 16.
    Hartman L, Lago RCA. Rapid preparation of fatty acids methyl esters. London: Laboratory Practice 1986;22:475–6.Google Scholar
  17. 17.
    SAS. Statistical Analysis System. User’s guide: statistics. Versão 6.12. Cary: North Carolina State University; 1996.Google Scholar
  18. 18.
    Brasil-Ministério da Saúde. Agência Nacional de Vigilância Sanitária: ANVISA; Resolução nº 482, de 23 de setembro de 1999, seção 1, 82–87.Google Scholar
  19. 19.
    Codex alimentarius. Norma del codex para aceites vegetales especificados. In: Food and Agriculture Organization of the United Nations. Codex stan 210. 2005. http://www.codexalimentarius.net/download/standards/336/CXS_210s.pdf. Accessed 17 June 2010.
  20. 20.
    Hui YH. Handbook of food science, technology, and engineering. Boca Raton: CRC Press; 2006.Google Scholar
  21. 21.
    Abdalla AL, Silva Filho JC, Godoi AR, Carmo CA, Eduardo JLP. Utilização de subprodutos da indústria de biodiesel na alimentação de ruminantes. Rev Bras Zootec. 2008;37:258–60.CrossRefGoogle Scholar
  22. 22.
    Scholz V, Silva JN. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg. 2008;32:95–100.CrossRefGoogle Scholar
  23. 23.
    Canoira L, Galeán JG, Alcántara R, Lapuerta M, García-Contreras R. Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties. Renew Energ. 2010;35:208–17.CrossRefGoogle Scholar
  24. 24.
    Urioste D, Castro MBA, Biaggio FC, Castro HF. Síntese de padrões cromatográficos e estabelecimento de método para dosagem da composição de ésteres de ácidos graxos presentes no biodiesel a partir do óleo de babaçu. Quim Nova. 2008;31(2):407–12.CrossRefGoogle Scholar
  25. 25.
    Abou-Gharbia HA, Shehata AAY, Shahidi F. Effect of processing on oxidative stability and lipid classes of sesame oil. Food Res Int. 2000;33:331–40.CrossRefGoogle Scholar
  26. 26.
    Were BA, Onkware AO, Gudu S, Welander M, Carlsson AS. Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crops Res. 2006;97:254–60.CrossRefGoogle Scholar
  27. 27.
    Schneider RCS, Baldissarelli VZ, Trombetta F, Martinelli M, Caramão EB. Optimization of gas chromatographic–mass spectrometric analysis for fatty acids in hydrogenated castor oil obtained by catalytic transfer hydrogenation. Anal Chem Acta. 2004;505:223–6.CrossRefGoogle Scholar
  28. 28.
    Martín C, Moure A, Martín G, Carrillo E, Domínguez H, Parajó JC. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenerg. 2010;34:533–8.CrossRefGoogle Scholar
  29. 29.
    Faria EA, Leles MIG, Ionashiro M, Zuppa TO, Antoniosi Filho NR. Estudo da estabilidade térmica de óleos e gorduras vegetais por TG/DTG e DTA. Eclet. Quím.(online). 2002; 27. doi: 10.1590/s0100-46702002000100010.
  30. 30.
    Conceição MM, Fernandes VJ Jr, Araújo AS, Farias MF, Santos IMG, Souza AG. Thermal and oxidative degradation of castor oil biodiesel. Energ Fuels. 2007;21(3):1522–7.CrossRefGoogle Scholar
  31. 31.
    Epaminondas PS, Araújo KLGV, Nascimento JA, Silva MCD, Rosenhaim R, Soledade LEB, Queiroz N, Souza AL, Santos IMG, Souza AG. Influence of toasting and the seed variety on the physico-chemical and thermo-oxidative characteristics of the flaxseed oil. J Therm Anal Calorim. 2011;106:545–50.CrossRefGoogle Scholar
  32. 32.
    Santos NA, Santos JRJ, Sinfrônio FSM, Bicudo TC, Santos IMG, Antoniosi Filho NR, Fernandes VJ Jr, Souza AG. Thermo-oxidative stability and cold flow properties of babassu biodiesel by PDSC and TMDSC. J Therm Anal Calorim. 2009;97(2):611–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ertha Janine Lacerda de Medeiros
    • 1
  • Rita de Cássia Ramos do Egypto Queiroga
    • 2
  • Antônio Gouveia de Souza
    • 3
  • Angela Maria Tribuzy de M. Cordeiro
    • 1
  • Ariosvaldo Nunes de Medeiros
    • 4
  • Darklê Luiza de Souza
    • 4
  • Marta Suely Madruga
    • 1
  1. 1.Post-graduation Program in Science and Food TechnologyTechnology Center, Federal University of Paraiba (PPGCTA/CT/UFPB)João PessoaBrazil
  2. 2.Department of Nutrition, Center for Health SciencesFederal University of Paraiba (DN/CCS/UFPB)João PessoaBrazil
  3. 3.Laboratory of Fuels and Materials, Department of Chemistry, Center for Science and NatureFederal University of Paraiba (LACOM/DQ/SCHS/UFPB)João PessoaBrazil
  4. 4.Doctoral Degree Program in Animal Science, Department of Animal Science, Agricultural Science CenterFederal University of Paraiba (PDIZ/CCA/UFPB)AreiaBrazil

Personalised recommendations