Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 1, pp 51–57 | Cite as

Synthesis and hydrogen absorption kinetics of V4Cr4Ti alloy

  • Sanjay Kumar
  • Manju Taxak
  • Nagaiyar Krishnamurthy


V4Cr4Ti alloy is synthesized by aluminothermy process followed by electron beam refining. Hydrogen absorption characteristics of the alloy have been evaluated by measuring the pressure composition isotherm (PCIT) at 57 °C temperature. Two plateau pressures are observed in the PCIT curve. Substantial decrease in the hydrogen absorption capacity of the alloy as compared to vanadium has been recorded. Hydrogen absorption kinetics of the alloy was investigated in the temperature range of 200–500 °C. Three-dimensional diffusion appears to be the rate controlling step of the hydrogen absorption. The apparent activation energy was calculated as 0.16 eV/atom-hydrogen.


Isothermal TG Activation energy Diffusion process Hydrogen storage Aluminothermy 



The authors record their sincere appreciation of Dr. Anamika Singh, Research Associate, Department of Biotechnology, Government of India, Mr. Samarjeet Kumar of Tata Consultancy Services, Mumbai and Amit Tirpude from IIT Bombay for their technical assistance during the data analysis.


  1. 1.
    Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile application. Nature. 2001;414:353–8.CrossRefGoogle Scholar
  2. 2.
    Marban G, Solis TV. Towards the hydrogen economy? Int J Hydrogen Energy. 2007;32:1625–37.CrossRefGoogle Scholar
  3. 3.
    Sakintuna B, Darkrim FL, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32:1121–40.CrossRefGoogle Scholar
  4. 4.
    Elena D. An overview of advance materials for hydrogen storage. J Mat Proc Tech. 2005;162–163:169–77.Google Scholar
  5. 5.
    Gerard NN, Ono S. In L. Schlapbach (ed.) Hydrogen inIntermetallic compounds H, Chap 4. Berlin: Springer; 1992.Google Scholar
  6. 6.
    Sanjay K, Krishnamurthy N. Corrosion of Fe9Cr1Mo steel in stagnant liquid lead-lithium eutectic. Fusion Eng Des. 2012;. doi: 10.1016/j.fusengdes.Google Scholar
  7. 7.
    Tanaka T, Keita M, Azofeifa DE. Theory of hydrogen absorption in metal hydrides. Phys Rev B. 1981;24(4):1771–6.CrossRefGoogle Scholar
  8. 8.
    Zhou L, Zhou Y, Sun Y. Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. Int J Hydrogen Energy. 2006;31(2):259–64.CrossRefGoogle Scholar
  9. 9.
    Lototsky MV, Yartys VA, Zavaliy IY. Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties. J Alloys Comp. 2005;404–406:421–6.CrossRefGoogle Scholar
  10. 10.
    Muraleedharan K, Kannan MP, Ganga Devi T. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.CrossRefGoogle Scholar
  11. 11.
    Kuriiwa T, Tamura T, Amemiya T, Fuda T, A Kamgawa H. Takamura hydrogen storage properties of vanadium-based bcc solid solution metal hydrides. J Alloys Comp. 2003;348:252–7.CrossRefGoogle Scholar
  12. 12.
    Peterson DT, Nelson SO. Isopiestic solubility of hydrogen in vanadium alloys at low temperatures. Metall Trans A. 1985;16A:367–74.Google Scholar
  13. 13.
    Lototsky MV, Yartys VA, Zavaliy IY. Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties. J Alloys Compds. 2005;404–406:421–6.CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Ozaki T, Komaki M, Nishmura C. Hydrogen permeation characteristics of vanadium–aluminium alloys. Scripta Mater. 2002;47:601–6.CrossRefGoogle Scholar
  15. 15.
    Tetsuya O, Zhang Y, Komaki M, Nishimura C. Hydrogen permeation characteristics of V–Ni–AI alloys. Int J Hydrogen Energy. 2003;28:1229–35.Google Scholar
  16. 16.
    Song W, Du J, Xu Y, Long B. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes. J Nucl Mater. 1997;246:139–43.CrossRefGoogle Scholar
  17. 17.
    Lin HC, Lin KM, Wu KC, Hsiung HH, Tsai HK. Cyclic hydrogen absorption-desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int J Hydrogen Energy. 2007;32:4966–72.CrossRefGoogle Scholar
  18. 18.
    Mazzolai G. Some physical aspects of hydrogen behavior in the H-Storage bcc alloys Ti35VxCr65−x, Ti40VxMn50−xCr10 and TixCr97.5−xMo2.5. Int J Hydrogen Energy. 2008;33:7116–21.CrossRefGoogle Scholar
  19. 19.
    Cho SW, Park CN, Yoo JH, Choi J, Park JS, Suh CY, Shim G. Hydrogen absorption-desorption characteristics of Ti (0.22 + x)Cr (0.28 + 1.5x) V (0.5–2.5x) (0 ≤ x ≤ 0.12) alloy. J Alloys Comp. 2005;403:262–6.CrossRefGoogle Scholar
  20. 20.
    Kabutomori T, Takeda H, Wakisaka Y, Ohnishi K. Hydrogen absorption properties of Ti–Cr–A (A≡V, Mo or other transition metal) B.C.C. solid solution alloys. J Alloys Compds. 1995;231:528–32.CrossRefGoogle Scholar
  21. 21.
    Sanjay K, Krishnamurthy N. Synthesis of V–Ti–Cr alloys by aluminothermy co-reduction of its oxides. Int J Proc App Ceram. 2011;5(4):181–6.Google Scholar
  22. 22.
    Carlson ON, Schmidt FA, Krupp WA. A process for preparing high purity vanadium. J Met. 1966;18:320–3.Google Scholar
  23. 23.
    Krishnamurthy N, Sanjay K, Awasthi A. Preparation of binary alloys of refractory metals by co-reduction: group V metals alloy. In: RM30/1-RM30/10, 17th Plansee Seminar Proceeding, Plansee Group, Austria 2009, vol 1, p. 1–10.Google Scholar
  24. 24.
    Kumar S, Taxak M, Krishnamurthy N, Suri AK, Tiwari GP. Solid solubility of hydrogen in V–Al alloys. Int J Refract Met Hard Mater. 2012;31:76–81.CrossRefGoogle Scholar
  25. 25.
    Kumar S, Krishnamurthy N. Variation of activation energy of hydrogen absorption of vanadium as a function of aluminum. Int J Hydrogen Energy. 2012;37(18):13429–36.CrossRefGoogle Scholar
  26. 26.
    Lech N, Anna A, Tomasz B, Pawel S, Stanislaw L. The kinetics of gasification of char derived from sewage sludge. J Therm Anal Calorim. 2011;104:693–700.CrossRefGoogle Scholar
  27. 27.
    Kumar S, Taxak M, Krishnamurthy N. Hydrogen absorption kinetics of V4Cr4Ti alloys prepared by aluminothermy process. Int J Hydrogen Energy. 2012;37(4):3283–91.CrossRefGoogle Scholar
  28. 28.
    Chou KC, Li Q, Lin Q, Jiang LJ, Xu KD. Kinetics of absorption and desorption of hydrogen in alloy powder. Int J Hydrogen Energy. 2005;30:301–9.CrossRefGoogle Scholar
  29. 29.
    Illekova E, Harnuskova J, Florek R, Simancik F, Matko I, Svec P. Peculiarities of TiH2 decomposition. J Therm Anal Calorim. 2011;105(2):583–90.CrossRefGoogle Scholar
  30. 30.
    Suba K, Udupa MR. Solid state reaction in the potassium iodate and molybdenum (VI) oxides system. J Therm Anal Calorim. 1989;35:1191–9.CrossRefGoogle Scholar
  31. 31.
    Ozawa T. Kinetics analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–7.CrossRefGoogle Scholar
  32. 32.
    Kumar S, Taxak M, Krishnamurthy N. Hydrogen absorption kinetics of V–Al alloy. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2558-1.Google Scholar
  33. 33.
    Dumitru R, Carp O, Budrugeac P, Niculescu M, Segal E. Non isothermal decomposition kinetics of [CoC2O4×2.5H2O]n. J Therm Anal Calorim. 2011;103(2):591–6.CrossRefGoogle Scholar
  34. 34.
    Wu X, Wu W, Zhou K, Cui X, Lian S. Product and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4nH2O. J Therm Anal Calorim. 2011;. doi: 10.1007/s10973-011-1968-9.Google Scholar
  35. 35.
    Chen F, Sorensen OT, Meng G, Peng D. Thermal decomposition of BaC2O4×1/2H2O Studied by stepwise isothermal analysis and non-isothermal thermogravimetry. J Therm Anal Calorim. 1998;53:397–410.CrossRefGoogle Scholar
  36. 36.
    Veolkl J, Alefeld G. Hydrogen in metals I—basic properties. Berlin: Springer; 1978.Google Scholar
  37. 37.
    San-Martin A, Manchester FD. The Al–H (aluminium–hydrogen) system. J Phase Equilib. 1992;13(1):17–21.CrossRefGoogle Scholar
  38. 38.
    Waisman JL, Sine G, Robinson LB. Diffusion of hydrogen in titanium alloys due to composition, temperature and stress gradients. Met Trans. 1973;4:291–302.CrossRefGoogle Scholar
  39. 39.
    Ke X, Kramer JG, Løvvik OM. The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys. 2004;16:6267–77.Google Scholar
  40. 40.
    Wu CL, Yan YG, Chen YG, Tao MD, Zheng X. Effects of rare earths (RE) elements on V based hydrogen storage alloys. Int J Hydrogen Energy. 2008;33:93–7.CrossRefGoogle Scholar
  41. 41.
    Wang HB, Wang Q, Dong C, Yuan L, Xu F, Sun LX. Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities. J Phys. 2008;98(012018):1–8.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Sanjay Kumar
    • 1
  • Manju Taxak
    • 1
  • Nagaiyar Krishnamurthy
    • 1
  1. 1.Fusion Reactor Materials SectionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations