Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 2, pp 703–711 | Cite as

Thermal behaviour of poly(dimethylsiloxane) hybrid silicas prepared by radiation grafting

  • Ornella Ursini
  • Giancarlo Angelini
  • Edo Lilla
  • Donatella Capitani
  • Franco Cataldo
  • Claudio Villani


This paper reports our investigation regarding the thermal properties of new polymer-silica hybrid materials obtained by radiation grafting. The polymer poly(dimethylsiloxane),bis(3-aminopropyl)terminated is γ-grafted on a silica gel surface. The thermal behaviour of γ-grafted hybrid materials reveals remarkable differences compared to the thermal behaviour of physically adsorbed polymers. These differences allow us to assess the ability of γ-rays to produce a polymer chemically bonded on a silica surface. The chemical bonds formed by irradiation give to the polymer a high conformational stability confirmed by DTA analysis.


Hybrid silica material Thermogravimetric analysis Radiation grafting Poly-dimethylsiloxane 



This work was supported by the National Research Council of Italy.


  1. 1.
    Xia B, Xiao SJ, Wang J, Guo DJ. Stability improvement of porous silicon surface structures by grafting polydimethylsiloxane polymer monolayers. Thin Solid Film. 2005;474:306–9.CrossRefGoogle Scholar
  2. 2.
    Collins KE, Sà ALA, Bottoli CBG, Collins CH. Thermal immobilization of poly(methyloctylsiloxane) in the pores of chromatographic silica. Chromatographia. 2001;53:661–4.CrossRefGoogle Scholar
  3. 3.
    Sanchez C, de Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V. Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem Mater. 2001;13:3061–83.CrossRefGoogle Scholar
  4. 4.
    Sanchez C, Lebeau B, Chaput F, Boilot JP. Optical properties of functional hybrid organic–inorganic nanocomposites. Adv Mater. 2003;15:1969–94.CrossRefGoogle Scholar
  5. 5.
    Bauer F, Ernst H, Decker U, Findeisen M, Glasel HJ, Langguth H, Hartmann E, Mehnert R, Peuker C. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 1 FTIR and multi-nuclear NMR spectroscopy to the characterization of methacryl grafting. Macromol Chem Phys. 2000;201:2654–9.CrossRefGoogle Scholar
  6. 6.
    Cataldo F, Ursini O, Lilla E, Angelini G. Radiation-induced polymerization and grafting of β(−)pinene on silica surface. Radiat Phys Chem. 2008;77:561–70.CrossRefGoogle Scholar
  7. 7.
    Cataldo F, Ursini O, Lilla E, Angelini G. Radiation-induced synthesis of fullerene-silica hybrid nanomaterials. Fuller Nanotub Carbon Nanostruct. 2007;15:445–63.CrossRefGoogle Scholar
  8. 8.
    Brinker CJ, Scherer GW. Sol–gel science. The physics and chemistry of sol–gel processing. San Diego: Academic Press; 1990.Google Scholar
  9. 9.
    Lebeau B, Sanchez C. Sol–gel derived hybrid inorganic–organic nanocomposites for optics. Curr Opin Solid State Mater Sci. 1999;4:11–23.CrossRefGoogle Scholar
  10. 10.
    Ranogaiec F, Mlinac-Misak M. Improvement of the polymer stability by radiation grafting. Radiat Phys Chem. 2004;71:227–31.Google Scholar
  11. 11.
    Cleland MR, Parks LA, Cheng S. Applications for radiation processing of materials. Nucl Instrum Methods Phys Res B. 2003;208:66–73.CrossRefGoogle Scholar
  12. 12.
    Zhirong L, Huiliang W. Radiation-induced grafting of glycidyl methacrylate onto high-density polyethylene (HDPE) and radiation lamination of HDPE. J Appl Polym Sci. 2005;96:772–9.CrossRefGoogle Scholar
  13. 13.
    Khalil MMI, El-Sawy NM, El-Shobaky GA. γ-Irradiation effects on the thermal and structural characteristics of modified, grafted polypropylene. J Appl Polym Sci. 2006;102:506–15.CrossRefGoogle Scholar
  14. 14.
    Jardim ICSF, Collins KE, Anazawa TA. Radiation immobilization of poly(methyloctylsiloxane) on silica for use in HPLC: a uniform layer model. J Chromatogr A. 1999;849:299–307.CrossRefGoogle Scholar
  15. 15.
    Bachmann S, Melo LFC, Silva RB, Anazawa TA, Jardim ICSF, Collins KE, Collins CH, Albert K. Synthesis and solid-state NMR investigations of radiation-immobilized polysiloxanes on bare, titanium-grafted, and zirconium-grafted silicas. Chem Mater. 2001;13:1874–9.CrossRefGoogle Scholar
  16. 16.
    Gomes SR, Margaça FMA, Miranda Salvado IM, Leal JP, Marques C, Alves E, Ferreira LM, Falcão AN. Elemental and RBS analysis of hybrid materials prepared by gamma-irradiation. Nucl Instrum Methods Phys Res B. 2008;266:288–94.CrossRefGoogle Scholar
  17. 17.
    Gomes SR, Margaça FMA, Ferreira LM, Miranda Salvado IM, Falcão AN. Thermal analysis of hybrid materials prepared by γ-irradiation. J Therm Anal Calorim. 2009;95:99–103.CrossRefGoogle Scholar
  18. 18.
    Xu Y-M, Qi J, He D-M, Wang D-M, Chen H-Y, Guan Jun, Zhang Q-M. Preparation of amorphous silica from oil shale residue and surface modification by silane coupling agent. Oil Shale. 2010;27:37–46.CrossRefGoogle Scholar
  19. 19.
    Gun’ko VM, Dyachenko AG, Borysenko MV. CVD-titania on mesoporous silica gels. Adsorption. 2002;8:59–70.CrossRefGoogle Scholar
  20. 20.
    Anazawa TA, Jardim ICSF. Polymethyloctilsiloxane adsorbed on porous silica as a packing material for reversed phase high performance liquid chromatography. J Liq Chromatogr. 1994;17:1265–79.CrossRefGoogle Scholar
  21. 21.
    David Sunseri J, Cooper WT, Dorsey JG. Reducing residual silanol interactions in reversed-phase liquid chromatography. Thermal treatment of silica before derivatization. JChromatogr A. 2003;1011:23–9.CrossRefGoogle Scholar
  22. 22.
    Leboda R, Mendyk E, Gierak A, Tertykh VA. Hydrothermal modification of silica gels (xerogels). Effect of treatment temperature on their porous structure. Colloids Surf A. 1995;105:181–9.CrossRefGoogle Scholar
  23. 23.
    Cataldo F, Capitani D, Proietti N, Ragni P. γ Radiolyzed amorphous silica: a study with 29Si CP-MAS NMR spectroscopy. Radiat Phys Chem. 2008;77:267–72.CrossRefGoogle Scholar
  24. 24.
    Patel M, Morrell PR, Murphy JJ, Skinner A, Maxwell RS. Gamma radiation induced effects on silica and on silica–polymer interfacial interactions in filled polysiloxane rubber. Polym Degrad Stab. 2006;91:406–13.CrossRefGoogle Scholar
  25. 25.
    Barrett DA, Brown VA, Watson RC, Davies MC, Shaw PN, Ritchie HJ, Ross P. Effects of acid treatment on the trace metal content of chromatographic silica: bulk analysis, surface analysis and chromatographic performance of bonded phases. J Chromatogr A. 2001;905:69–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ornella Ursini
    • 1
  • Giancarlo Angelini
    • 1
  • Edo Lilla
    • 1
  • Donatella Capitani
    • 1
  • Franco Cataldo
    • 2
  • Claudio Villani
    • 3
  1. 1.Institute of Chemical MethodologiesCNRMonterotondoItaly
  2. 2.Lupi Chemical Research InstituteRomeItaly
  3. 3.Dipartimento di Chimica e Tecnologie del FarmacoUniversità “La Sapienza”RomeItaly

Personalised recommendations