Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 2, pp 991–996 | Cite as

Crystal structure and thermodynamic properties of dipotassium diiron(III) hexatitanium oxide

  • A. V. Knyazev
  • N. G. Chernorukov
  • I. A. Letyanina
  • Yu. A. Zakharova
  • I. V. Ladenkov


In the present work, the temperature dependence of heat capacity of dipotassium diiron(III) hexatitanium oxide has been measured for the first time in the range from 10 to 300 K by means of precision adiabatic vacuum calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity \( C_{p}^{ \circ } (T) \), enthalpy \( H^{ \circ } (T) - H^{ \circ } (0) \), entropy \( S^{ \circ } (T) - S^{ \circ } (0), \) and Gibbs function \( G^{ \circ } (T) - H^{ \circ } (0) \) for the range from T → 0 to 300 K. The structure of K2Fe2Ti6O16 is refined by the Rietveld method: space group I4/m, Z = 1, a = 10.1344(2) Å, c = 2.97567(4) Å, V = 305.618(7) Å3. The high-temperature X-ray diffraction was used for the determination of coefficients of thermal expansion.


Dipotassium diiron(III) hexatitanium oxide Adiabatic vacuum calorimetry Heat capacity Thermodynamic functions X-ray diffraction 



This work was supported by the RF Ministry of Education and Science through the federal targeted program Scientists and Teachers of Innovative Russia, grant no. NK 540P.

Supplementary material

10973_2012_2606_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 69 kb)


  1. 1.
    Goodilin EA, Pomerantseva EA, Krivetsky VV, Itkis DM, Hester J. Tretyakov YuD. A simple method of growth and lithiation of Ba6Mn24O48 whiskers. J Mater Chem. 2005;15:1614–20.CrossRefGoogle Scholar
  2. 2.
    Leinekugel-le-Cocq AY, Deniard P, Jobic S, Cerny R, Bart F, Emerich H. Synthesis and characterization of hollandite-type material intended for the specific containment of radioactive cesium. J Solid State Chem. 2006;179:3196–208.CrossRefGoogle Scholar
  3. 3.
    Kadoma Y, Oshitari S, Ui K, Kumagai N. Synthesis of Hollandite-Type LixMnO2 by Li+ Ion-Exchange in Molten Salt and Lithium Insertion Characteristics. Electrochim Acta. 2007;53:1697–702.CrossRefGoogle Scholar
  4. 4.
    Rao PP, Reddy MLP. (TiO2)1(CeO2)1–x(RE2O3)x—novel environmental secure pigments. Dyes Pigm. 2007;73:292–7.CrossRefGoogle Scholar
  5. 5.
    Fujimoto K, Suzuki J, Harada M. Preparation of hollandite-type KxGaxSn8–xO16 thin film and NO adsorption behavior. Solid State Ionics. 2002;152:769–75.CrossRefGoogle Scholar
  6. 6.
    Cheary RW. An analysis of the structural characteristics of hollandite compounds. Acta Cryst. 1986;B42:229–36.Google Scholar
  7. 7.
    Knyazev AV, Chernorukov NG, Ladenkov IV. Belopol’skaya SS. Synthesis, structure, and thermal expansion of M2Fe2Ti6O16 and MFeTiO4 compounds. Russian. Inorg Mater. 2011;47:999–1005.CrossRefGoogle Scholar
  8. 8.
    Rietveld HM. Line profiles of neutron powder diffraction peaks for structure refinement. Acta Crystallogr. 1967;22:151.CrossRefGoogle Scholar
  9. 9.
    Izumi F, Young RA, editors. RIETAN-94 is distributed free of charge to spread and develop powder diffraction techniques. New York: Oxford University Press; 1993.Google Scholar
  10. 10.
    Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.CrossRefGoogle Scholar
  11. 11.
    Malyshev VM, Milner GA, Sorkin EL, Shibakin VF, Pribory i Tekhnika Eksperi-menta; 1985.Google Scholar
  12. 12.
    Sasaki T, Watanabe M, Fujiki Y. Structure of KTi8O16. Acta Crystallogr. 1993;49B:838–41.Google Scholar
  13. 13.
    Fox D, Labes MM, Weissberger A, editors. Physics and chemistry of the organic solid state. New York: Interscience Publishers; 1965.Google Scholar
  14. 14.
    Alford S, Dole M. Specific heat of synthetic high polymers. A study of the glass transition in polyvinyl chloride. J Am Chem Soc. 1955;77:4774–7.CrossRefGoogle Scholar
  15. 15.
    Adam G, Gibbs JU. One the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.CrossRefGoogle Scholar
  16. 16.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.CrossRefGoogle Scholar
  17. 17.
    Bestul AB, Chang SS. Exesses of entropy of glass transformation. J Chem Phys. 1964;40:3731–3.CrossRefGoogle Scholar
  18. 18.
    Michiue Y, Sato A, Watanabe M. Low-temperature phase of sodium priderite, NaxCrxTi8−xO16, with a monoclinic hollandite structure. J Solid State Chem. 1999;145:182–5.CrossRefGoogle Scholar
  19. 19.
    Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.CrossRefGoogle Scholar
  20. 20.
    Markin AV, Ruchenin VA, Smirnova NN, Markin GV, Ketkov SY, Kuropatov VA, Cherkasov VK, Abakumov GA, Domrachev GA. Thermodynamics of the bis-(η6-m-xylene)molybdenum fulleride [(η6-(m-xylene))2Mo]•+[C60]•−. J Therm Anal Calorim. 2011;105:635–43.CrossRefGoogle Scholar
  21. 21.
    Chase Jr MW. NIST-JANAF Thermochemical Tables, Fourth Edition. J Phys Chem Ref Data, Monograph 9. 1998: 1–1951.Google Scholar
  22. 22.
    Filatov SK. Vysokotemperaturnaya kristallokhimiy (high-temperature crystal chemistry). Leningrad: Nedra; 1990.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • A. V. Knyazev
    • 1
  • N. G. Chernorukov
    • 1
  • I. A. Letyanina
    • 1
  • Yu. A. Zakharova
    • 1
  • I. V. Ladenkov
    • 1
  1. 1.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations