Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 1, pp 423–429 | Cite as

Thermal decomposition of acrylamide from polyacrylamide

Time-resolved pyrolysis with ion-attachment mass spectrometry
  • Yuki Kitahara
  • Ko Okuyama
  • Keita Ozawa
  • Takuya Suga
  • Seiji Takahashi
  • Toshihiro Fujii


Ion-attachment mass spectrometry with a temperature-programed direct probe allows the detection of intact pyrolysis products. It, therefore, offers the opportunity to monitor directly thermal byproducts on a real-time basis and potentially to detect thermally unstable products. With this technique, we investigated the thermal decomposition of polyacrylamide (PAA). Pyrolysis of PAA at around 450 °C produces many products (e.g., amides, imides, nitriles, ketones, aldehydes, and acrylamide oligomers). Acrylamide, which is a possible carcinogen, is produced abundantly in various industries, and, therefore, continues to be a cause for concern. We also investigated the kinetics of the thermal decomposition of PAA, and observed that the degradation of acrylamide obeys Arrhenius kinetics, which allowed us to correlate the rate constant with the absolute temperature and the activation energy. The activation energy of thermal decomposition was calculated from selected ion-monitoring curves of acrylamide.


Thermal decomposition Acrylamide Polyacrylamide Ion-attachment mass spectrometry Tim-resolved pyrolysis 



This study was supported, in part, by a grant from the France–Japan Sasakawa Foundation (Code 11-PT/14) and a Grant from the JSPS (Code 21-09706).


  1. 1.
    Smith EA, Oehme FW. Acrylamide and polyacrylamide: a review of production, use, environmental fate and neurotoxicity. Rev Environ Health. 1991;9:215–28.CrossRefGoogle Scholar
  2. 2.
    Stephens SH. Final report on the safety assessment of polyacrylamide. J Am Coll Toxicol. 1991;10:193–202.Google Scholar
  3. 3.
    Loren SB, Fikry FA, Frank WB, Rodrick DL, Robert ES. Analysis of Residual Acrylamide In Field Crops. J Chromatogr Sci. 1999;37:240–4.Google Scholar
  4. 4.
    Christian DG. Quantitation of acrylamide (and polyacrylamide): critical review of methods for trace determination/formulation analysis & Future-research recommendations. The California Public Health Foundation; 1988. Retrieved 30 June 2010. Google Scholar
  5. 5.
    Tareke E, Rydberg P, Karlsson P, Eriksson S, Toernqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50(17):4998–5006. doi: 10.1021/jf020302f.PMID12166997.CrossRefGoogle Scholar
  6. 6.
    Van Dyke JD, Kasperski KL. Thermogravimetric study of polyacrylamide with evolved gas analysis. J Polym Sci A Polym Chem. 1993;31(7):1807–23. doi: 10.1002/pola.1993.080310720.CrossRefGoogle Scholar
  7. 7.
    Leung WM, Axelson DE, Van Dyke JD. Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). J Polym Sci A Polym Chem. 1987;25(7):1825–46. doi: 10.1002/pola.1987.080250711.CrossRefGoogle Scholar
  8. 8.
    Tutas M, Saglam M, Yuksel M, Guler C. Investigation of the thermal decomposition kinetics of polyacrylamide using a dynamic TG technique. Thermochim Acta. 1987;111:121–6. doi: 10.1016/0040-6031(87)88040-1.CrossRefGoogle Scholar
  9. 9.
    Vers LMV. Determination of acrylamide monomer in polyacrylamide degradation studies by high-performance liquid chromatography. J Chromatogr Sci. 1999;37(12):486–94.Google Scholar
  10. 10.
    Tutas M, Saglam M, Yuksel M. Pyrolysis product of polyacrylamide by pyrolysis–gas chromatography. J Anal Appl Pyrolysis. 1991;22(1–2):129–37. doi: 10.1016/0165-2370(91)85012-V.CrossRefGoogle Scholar
  11. 11.
    Smith EA, Oehme FW. Rapid direct analysis of acrylamide residue in polyacrylamide in polyacrylamide thickening agents. J Chromatogr Sci. 1993;31:192–5.Google Scholar
  12. 12.
    Smith EA, Prues SL, Oehme FW. Environmental degradation of polyacrylamides. I. Effects of artificial environmental conditions: Temperature, Light, and pH. Ecotoxicol Environ Saf. 1996;1996(35):121–35.CrossRefGoogle Scholar
  13. 13.
    NIST Chemistry Webbook. In: Mass spectrum (electron ionization).
  14. 14.
    Fujii T. Ion attachment mass spectrometry, “encyclopedia of mass spectrometry, Volume 6: ionization methods”: In: Michael Gross, editor. America Society for Mass Spectrometry. New York: Elsevier; 2007. pp. 327–334.Google Scholar
  15. 15.
    Fujii T. Alkali-metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrom Rev. 2000;19:111–38.CrossRefGoogle Scholar
  16. 16.
    Kitahara Y, Takahashi S, Kuramoto N, Sala M, Tsugoshi T, Sablier M, Fujii T. Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies. Anal Chem. 2009;81(8):3155–8. doi: 10.1021/ac802746d.CrossRefGoogle Scholar
  17. 17.
    Takahashi S, Tsukagoshi M, Kitahara Y, Juhasz M, Fujii T. Design and performance of an evolved gas analysis ion attachment mass spectrometer. Rapid Commun Mass Spectrom. 2010;24:2625–30. doi: 10.1002/rcm.4682.CrossRefGoogle Scholar
  18. 18.
    Kitahara Y, Takahashi S, Tsukagoshi M, Fujii T. Formation of bisphenol A by thermal degradation of poly(bisphenol A carbonate). Chemosphere. 2010;80:1281–4. doi: 10.1016/j.chemosphere.2010.06.053.CrossRefGoogle Scholar
  19. 19.
    Takahashi S, Kitahara Y, Nakamura M, Shiokawa Y, Fujii T. Temperature-resolved thermal analysis of cisplatin by means of Li+ ion attachment mass spectrometry. Phys Chem Chem Phys. 2010;12:3910–3. doi: 10.1039/b923454c.CrossRefGoogle Scholar
  20. 20.
    Knümann R, Bockhorn H. Investigation of the kinetics of pyrolysis of PVC by TG-MS-analysis. Combust Sci Technol. 1994;101(1–6):285–99.CrossRefGoogle Scholar
  21. 21.
    Toth I, Szepvolgyi J, Jakab E, Szabo P, Szekely T. Thermal decomposition of a bentonite–polyacrylamide complex. Thermochim Acta. 1990;170:155–66. doi: 10.1016/0040-6031(90)80533-5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Yuki Kitahara
    • 1
  • Ko Okuyama
    • 1
  • Keita Ozawa
    • 1
  • Takuya Suga
    • 1
  • Seiji Takahashi
    • 1
  • Toshihiro Fujii
    • 1
  1. 1.Department of ChemistryMeisei UniversityHino, TokyoJapan

Personalised recommendations