Skip to main content
Log in

Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the thermal degradations of some commercial polylactide (PLA) films, pure and subjected to various superficial treatments, were investigated in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Degradations were carried out in a thermobalance, in the scanning mode, at various heating rates, and the obtained thermogravimetric curves were discussed and interpreted. Experiments, performed in the temperature range of 35–700 °C, showed similar behavior in both the atmospheres used. The initial decomposition temperature (T i) and the apparent activation energy (E a) of degradation of the differently treated PLA films were determined and compared with each other and with those of untreated PLA. The E a of degradation was obtained by Kissinger’s method, and the values were found increased linearly as a function of crystallinity percentage (%c) as well as the T i values. The glass transition temperature (T g) was also determined by differential scanning calorimetry. All the investigated parameters showed dependence on different treatments made to the films. The results obtained for the degradations of PLA films were compared with each other, and a classification of thermal stability in the studied environments were made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cha Y, Pitt CG. The biodegradability of polyester blends. Biomaterials. 1990;11(2):108–12.

    Article  CAS  Google Scholar 

  2. Coombes AGA, Meikle MC. Resorbable synthetic polymers s replacements for bone graft. Clin Mater. 1994;17(1):35–67.

    Article  CAS  Google Scholar 

  3. Zhang L, Xiong C, Deng X. Biodegradable polyester blends for biomedical application. J Appl Polym Sci. 1995;56(1):103–12.

    Article  CAS  Google Scholar 

  4. Ikada Y. Polymeric biomaterials research. Adv Eng Mater. 1999;1(1):67–8.

    Article  CAS  Google Scholar 

  5. Duek EAR, Zavaglia CAC, Belangero WD. In vitro study of poly(lactic acid) pin degradation. Polymer. 1999;40(23):6465–73.

    Article  CAS  Google Scholar 

  6. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21(3):117–32.

    Article  CAS  Google Scholar 

  7. Vert M. Lactide polymerization faced with therapeutic application requirements. Macromol Symp. 2000;153(1):333–42.

    Article  CAS  Google Scholar 

  8. Bleach NC, Tanner KE, Kellomaki M, Tormala P. Effect of filler type on the mechanical properties of self-reinforced polylactide–calcium phosphate composites. J Mater Sci. 2001;12(10–12):911–5.

    CAS  Google Scholar 

  9. Dorgan JR, Lehermeier HJ, Palade LI, Cicero J. Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol Symp. 2001;175(1):55–66.

    Article  CAS  Google Scholar 

  10. Lehermeier HJ, Dorgan JR, Way D. Gas permeation properties of poly(lactic acid). J Membr Sci. 2001;190(2):243–51.

    Article  CAS  Google Scholar 

  11. Mochizuki M. Properties and application of aliphatic polyester products. In: Doi Y, Steinbuchel A, editors. Biopolymers. Polyesters III. Applications and commercial products. 1st ed. Weinheim: Wiley-VCH Verlag GmbH; 2002, p. 1–23.

  12. Tsuji H. Polylactides. In: Doi Y, Steinbuchel A, editors. Biopolymers. Polyesters III. Applications and commercial products. 1st ed. Weinheim: Wiley-VCH Verlag GmbH; 2002, p. 129–77.

  13. Ouchi T, Ohya Y. Design of lactide copolymers as biomaterials. J Polym Sci. 2004;42(3):453–62.

    CAS  Google Scholar 

  14. Dattaa R, Tsaia SP, Bonsignorea P, Moona SH, Frank JR. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev. 1995;16(2):221–31.

    Article  Google Scholar 

  15. Bogaert JC, Coszach P. Poly(lactic acids): a potential solution to plastic waste dilemma. Macromol Symp. 2000;153(1):287–303.

    Article  CAS  Google Scholar 

  16. Sawyer DJ. Bioprocessing—no longer a field of dreams. Macromol Symp. 2003;201(1):271–82.

    Article  CAS  Google Scholar 

  17. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN Jr, Pariza MW. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol. 1995;33(4):273–83.

    Article  CAS  Google Scholar 

  18. Gruber PR, O’Brien M. Polylactides. Nature works TM PLA. In: Doi Y, Steinbuchel A, editors. Biopolymers. Polyesters III. Applications and commercial products. 1st ed. Weinheim: Wiley-VCH Verlag GmbH; 2002, p. 235–50.

  19. Kawahima N, Ogawa S, Obuchi S, Matsuo M, Yagi T. Polylactic acid LACEA. In: Doi Y, Steinbuchel A, editors. Biopolymers. Polyesters III. Applications and commercial products. 1st ed. Weinheim: Wiley-VCH Verlag GmbH; 2002, p. 251–74.

  20. Williams DF. The effects of enzymes on polylactic acid. Eng Med. 1981;10:5–7.

    Article  Google Scholar 

  21. Ashley SL, McGinity JW. Enzyme-mediated drug release from poly(d, l-lactide) matrices. Congr Int Technol Pharm. 1989;5:195–204.

    CAS  Google Scholar 

  22. Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of copoly(dl-lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J. 1989;25(10):1019–26.

    Article  CAS  Google Scholar 

  23. Lim HA, Raku T, Tokiwa Y. A new method for the evaluation of biodegradable plastic using coated cellulose paper. Macromol Biosci. 2004;4(9):875–81.

    Article  CAS  Google Scholar 

  24. Reeve MS, McCarthy SP, Downey MJ, Gross RA. Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules. 1994;27(3):825–31.

    Article  CAS  Google Scholar 

  25. Cai H, Dave V, Gross RA, McCarthy SP. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci Pol Phys. 1996;34(16):2701–8.

    Article  Google Scholar 

  26. Li S, Tenon M, Garreau H, Braud C, Vert M. Enzymatic degradation of stereocopolymers derived from l-, dl-and meso-lactides. Polym Degrad Stab. 2000;67(1):85–90.

    Article  CAS  Google Scholar 

  27. Li S, Girard A, Garreau H, Vert M. Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polym Degrad Stab. 2001;71(1):61–7.

    Article  CAS  Google Scholar 

  28. Arvanitoyannis I, Nakayama A, Kawasaki N, Yamamoto N. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst: 1. Synthesis, characterization and study of their biodegradability. Polymer. 1995;36(15):2947–56.

    Article  CAS  Google Scholar 

  29. Jamshidi K, Hyon SH, Ikada Y. Thermal characterization of polylactides. Polymer. 1988;29:2229–34.

    Article  CAS  Google Scholar 

  30. Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84.

    Article  CAS  Google Scholar 

  31. Ljungberg N, Wesslen B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci. 2002;86:1227–34.

    Article  CAS  Google Scholar 

  32. Vink ETH, Rábago KR, Glassner DA, Gruber PR. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degr Stab. 2003;80(3):403–19.

    Article  CAS  Google Scholar 

  33. Auras RA, Harte B, Selke S, Hernandez R. Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheet. 2003;19(2):123–35.

    Article  CAS  Google Scholar 

  34. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    Article  CAS  Google Scholar 

  35. Auras R, Singh S, Singh J. Performance evaluation of PLA against existing PET and PS containers. J Test Eval. 2006;34:530–6.

    CAS  Google Scholar 

  36. Ahmed J, Zhang JX, Song Z, Varshney SK. Thermal properties of polylactides. Effect of molecular mass and nature of lactide isomer. J Therm Anal Calorim. 2009;95(3):957–64.

    Article  CAS  Google Scholar 

  37. Manich AM, Carilla J, Miguel RAL, Lucas JM, Franco FGF, Montero LA, Cayuela D. Thermal transitions of polylactide false-twist textured multifilaments determined by DSC and TMA. J Therm Anal Calorim. 2010;99:723–31.

    Article  CAS  Google Scholar 

  38. Witzke DR. Ph.D. Thesis, Michigan State University, East Lansing; 1997, p. 389.

  39. Abate L, Blanco I, Pollicino A, Recca A. Determination of degradation apparent activation energy values of polymers: regression of kinetic parameters derived from TG data. J Therm Anal Calorim. 2002;70:63–73.

    Article  CAS  Google Scholar 

  40. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. 2012;107(3):1083–91.

    Article  CAS  Google Scholar 

  41. Blanco I, Abate L, Antonelli ML. The regression of isothermal thermogravimetric data to evaluate degradation E a values of polymers: a comparison with literature methods and an evaluation of lifetime prediction reliability. Polym Degrad Stab. 2011;96:1947–54.

    Article  CAS  Google Scholar 

  42. User’s manual TA 3000 system. Greifensee: Mettler Instrument, AG; 1984.

  43. Csaba N. Handbook of thermal analysis and calorimetry. In: Gallagher Patrick K, Brown Michael E, editors. Principles and practice, vol. 1. Amsterdam: Elsevier; 1998.

    Google Scholar 

  44. Blanco I, Abate L, Bottino FA, Bottino P. Hepta isobutyl polyhedral oligomeric silsesquioxanes (hib-POSS): a thermal degradation study. J Therm Anal Calorim. 2012;108:807–15.

    Google Scholar 

  45. Abate L, Asarisi V, Blanco I, Cicala G, Recca G. The influence of sulfonation degree on the thermal behaviour of sulfonated poly(arylene ethersulfone)s. Polym Degrad Stab. 2010;95:1568–74.

    Article  CAS  Google Scholar 

  46. Blanco I, Oliveri L, Cicala G, Recca A. Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim. 2012;108:685–93.

    Google Scholar 

  47. Abate L, Blanco I, Cicala G, Mamo A, Recca G, Scamporrino A. The influence of chain rigidity on the thermal properties of some novel random copolyethersulfones. Polym Degrad Stab. 2010;95:798–802.

    Article  CAS  Google Scholar 

  48. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  49. Siracusa V, Blanco I, Romani S, Tylewicz U, Roccoli P, Dalla Rosa M. Correlation between thermal, mechanical and barrier properties of poly(lactic acid) (PLA) modified films used on food packaging application. J Appl Polym Sci. 2012;125:E390–E401.

    Google Scholar 

  50. Hoekstra HD, Spoormaker JL, Breen J, Audouin L, Verdu J. UV-exposure of stabilized and non-stabilized HDPE films: physico-chemical characterization. Polym Degr Stab. 1995;49(2):251–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, I., Siracusa, V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim 112, 1171–1177 (2013). https://doi.org/10.1007/s10973-012-2535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2535-8

Keywords

Navigation