Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 2, pp 1507–1514 | Cite as

Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity

  • Ping Song
  • Guangyi Chen
  • Zhiyong Wei
  • Wanxi Zhang
  • Jicai Liang
Article

Abstract

The polymorphous crystallization and multiple melting behavior of poly(l-lactic acid) (PLLA) with an optical purity of 92 % were investigated after isothermally crystallized from the melt state by wide-angle X-ray diffraction and differential scanning calorimetry. Owing to the low optical purity, it was found that the disordered (α′) and ordered (α) crystalline phases of PLLA were formed in the samples crystallized at lower (<95 °C) and higher (≥95 °C) temperatures, respectively. The melting behavior of PLLA is different in three regions of crystallization temperature (T c) divided into Region I (T c < 95 °C), Region II (95 °C ≤ T c < 120 °C), and Region III (T c ≥ 120 °C). In Region I, an exothermic peak was observed between the low-temperature and high-temperature endothermic peaks, which results from the solid–solid phase transition of α′-form crystal to α one. In Region II, the double-melting peaks can be mainly ascribed to the melting–recrystallization–remelting of less stable α crystals. In Region III, the single endotherm shows that the α crystals formed at higher temperatures are stable enough and melt directly without the recrystallization process during heating.

Keywords

Multiple melting behavior Poly(l-lactic acid) Polymorphous crystallization Phase transition 

Notes

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 30870633, 31000427) and the Fundamental Research Funds for the Central Universities (No. DUT12JB09).

References

  1. 1.
    Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater. 2000;12:1841–6.CrossRefGoogle Scholar
  2. 2.
    Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.CrossRefGoogle Scholar
  3. 3.
    Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35:338–56.CrossRefGoogle Scholar
  4. 4.
    De Santis P, Kovacs AJ. Molecular conformation of poly(S-lactic acid). Biopolymers. 1968;6:299–306.CrossRefGoogle Scholar
  5. 5.
    Miyata T, Masuko T. Morphology of poly(l-lactide) solution-grown crystals. Polymer. 1997;38:4003–9.CrossRefGoogle Scholar
  6. 6.
    Alemán C, Lotz B, Puiggali J. Crystal structure of the α-form of poly(l-lactide). Macromolecules. 2001;34:4795–801.CrossRefGoogle Scholar
  7. 7.
    Sasaki S, Asakura T. Helix distortion and crystal structure of the α form of poly(l-lactide). Macromolecules. 2003;36:8385–90.CrossRefGoogle Scholar
  8. 8.
    Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 1982;23:1587–93.CrossRefGoogle Scholar
  9. 9.
    Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P. Crystal structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules. 1990;23:634–42.CrossRefGoogle Scholar
  10. 10.
    Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(l-lactide). Polymer. 2000;41:8921–30.CrossRefGoogle Scholar
  11. 11.
    Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer. 2000;41:8909–19.CrossRefGoogle Scholar
  12. 12.
    Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules. 2005;38:8012–21.CrossRefGoogle Scholar
  13. 13.
    Zhang J, Tashiro K, Domb AJ, Tsuji H. Confirmation of disorder α form of poly(l-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp. 2006;242:274–8.CrossRefGoogle Scholar
  14. 14.
    Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules. 2007;40:6898–905.CrossRefGoogle Scholar
  15. 15.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(l-lactide). J Appl Polym Sci. 2008;107:54–62.CrossRefGoogle Scholar
  16. 16.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M. Crystallization and melting behavior of poly(l-lactic acid). Macromolecules. 2007;40:9463–9.CrossRefGoogle Scholar
  17. 17.
    Salmerón Sánchez M, Mathot VBF, Vanden Poel G, Gómez Ribelles JL. Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules. 2007;40:7989–97.CrossRefGoogle Scholar
  18. 18.
    Cho TY, Strobl G. Temperature dependent variations in the lamellar structure of poly(l-lactide). Polymer. 2006;47:1036–43.CrossRefGoogle Scholar
  19. 19.
    Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G. Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab. 2010;95:1148–59.CrossRefGoogle Scholar
  20. 20.
    Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). Eur Polym J. 2005;41:569–75.CrossRefGoogle Scholar
  21. 21.
    Di Lorenzo ML. The crystallization and melting processes of poly(l-lactic acid). Macromol Symp. 2006;234:176–83.CrossRefGoogle Scholar
  22. 22.
    Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Crystallization behavior of poly(l-lactic acid). Polymer. 2006;47:7554–63.CrossRefGoogle Scholar
  23. 23.
    Krache R, Benavente R, López Majada JM, Perena JM, Cerrada ML, Pérez E. Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40:6871–8.CrossRefGoogle Scholar
  24. 24.
    De Rosa C, Auriemma F, Vinti V, Galimberti M. Equilibrium melting temperature of syndiotactic polypropylene. Macromolecules. 1998;31:6206–10.CrossRefGoogle Scholar
  25. 25.
    Liu T, Petermann J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.CrossRefGoogle Scholar
  26. 26.
    Lee Y, Porter RS. Double-melting behavior of poly(ether ether ketone). Macromolecules. 1987;20:1336–41.CrossRefGoogle Scholar
  27. 27.
    Lee Y, Porter RS, Lin JS. On the double-melting behavior of poly(ether ether ketone). Macromolecules. 1989;22:1756–60.CrossRefGoogle Scholar
  28. 28.
    Lattimer MP, Hobbs JK, Hill MJ, Barham PJ. On the origin of the multiple endotherms in PEEK. Polymer. 1992;33:3971–3.CrossRefGoogle Scholar
  29. 29.
    Wang ZG, Hsiao BS, Sauer BB, Kampert WG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer. 1999;40:4615–27.CrossRefGoogle Scholar
  30. 30.
    Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terephthalate). Polymer. 2003;44:623–33.CrossRefGoogle Scholar
  31. 31.
    Ju MY, Chang FC. Multiple melting behavior of poly(butylene-2,6-naphthalate). Polymer. 2001;42:5037–45.CrossRefGoogle Scholar
  32. 32.
    Srimoaon P, Dangseeyun N, Supaphol P. Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J. 2004;40:599–608.CrossRefGoogle Scholar
  33. 33.
    Yasuniwa M, Satou T. Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci Part B Polym Phys. 2002;40:2411–20.CrossRefGoogle Scholar
  34. 34.
    Xu Y, Xu J, Guo B, Xie X. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B Polym Phys. 2007;45:420–8.CrossRefGoogle Scholar
  35. 35.
    Wang Y, Bhattacharya M, Mano JF. Thermal analysis of the multiple melting behavior of poly(butylene succinate-co-adipate). J Polym Sci Part B Polym Phys. 2005;43:3077–82.CrossRefGoogle Scholar
  36. 36.
    Gunaratne LMWK, Shanks RA. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polym J. 2005;41:2980–8.CrossRefGoogle Scholar
  37. 37.
    Shan GF, Yang W, Tang XG, Yang MB, Xie BH, Fu Q, Mai YW. Multiple melting behaviour of annealed crystalline polymers. Polym Test. 2010;29:273–80.CrossRefGoogle Scholar
  38. 38.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Part B Polym Phys. 2004;42:25–32.CrossRefGoogle Scholar
  39. 39.
    Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(l-lactic acid). J Appl Polym Sci. 2006;100:3145–51.CrossRefGoogle Scholar
  40. 40.
    Ling X, Spruiell JE. Analysis of the complex thermal behavior of poly(l-lactic acid) film. I. Samples crystallized from the glassy state. J Polym Sci Part B Polym Phys. 2006;44:3200–14.CrossRefGoogle Scholar
  41. 41.
    Ling X, Spruiell JE. Analysis of the complex thermal behavior of poly(l-lactic acid) film. II. Samples crystallized from the melt. J Polym Sci Part B Polym Phys. 2006;44:3378–91.CrossRefGoogle Scholar
  42. 42.
    Shieh YT, Liu GL. Temperature-modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt-crystallized poly(l-lactic acid). J Polym Sci Part B Polym Phys. 2007;45:466–74.CrossRefGoogle Scholar
  43. 43.
    Yasuniwa M, Iura K, Dan Y. Melting behavior of poly(l-lactic acid): effects of crystallization temperature and time. Polymer. 2007;48:5398–407.CrossRefGoogle Scholar
  44. 44.
    Wang Y, Mano JF. Role of thermal history on the thermal behavior of poly(l-lactic acid) studied by DSC and optical microscopy. J Therm Anal Calorim. 2005;80:171–5.CrossRefGoogle Scholar
  45. 45.
    Yasuniwa M, Sakamo K, Ono Y, Kawahara W. Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer. 2008;49:1943–51.CrossRefGoogle Scholar
  46. 46.
    Su Z, Li Q, Liu Y, Hu GH, Wu C. Multiple melting behavior of poly(lactic acid) filled with modified carbon black. J Polym Sci Part B Polym Phys. 2009;47:1971–80.CrossRefGoogle Scholar
  47. 47.
    Xu HS, Dai XJ, Lamb PR, Li ZM. Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys. 2009;47:2341–52.CrossRefGoogle Scholar
  48. 48.
    Calafe M, Remiro PM, Cortázar MM, Calahorra ME. Cold crystallization and multiple melting behavior of poly(l-lactide) in homogeneous and in multiphasic epoxy blends. Colloid Polym Sci. 2010;288:283–96.CrossRefGoogle Scholar
  49. 49.
    Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(l-lactic acid-co-d-lactic acid). J Polym Sci Part B Polym Phys. 2011;49:409–13.CrossRefGoogle Scholar
  50. 50.
    Lan Q, Yu J, He J, Maurer FHJ, Zhang J. Thermal behavior of poly(l-lactide) having low l-isomer content of 94 % after compressed CO2 treatment. Macromolecules. 2010;43:8602–9.CrossRefGoogle Scholar
  51. 51.
    Sarasua JR, Prud’homme RE, Wisniewski M, Borgne AL, Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–905.CrossRefGoogle Scholar
  52. 52.
    Kolstad JJ. Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci. 1996;62:1079–91.CrossRefGoogle Scholar
  53. 53.
    Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS. Crystallization and microstructure of poly(l-lactide-co-meso-lactide) copolymers. Macromolecules. 1998;31:2593–9.CrossRefGoogle Scholar
  54. 54.
    Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys. 1996;197:3483–99.CrossRefGoogle Scholar
  55. 55.
    Di Lorenzo ML, Cocca M, Malinconico M. Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta. 2011;522:110–7.CrossRefGoogle Scholar
  56. 56.
    Cocca M, Di Lorenzo ML, Malinconico M, Frezza V. Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur Polym J. 2011;47:1073–80.CrossRefGoogle Scholar
  57. 57.
    Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.CrossRefGoogle Scholar
  58. 58.
    Baratian S, Hall ES, Lin JS, Xu R, Runt J. Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-d-lactide)s. Macromolecules. 2001;34:4857–64.CrossRefGoogle Scholar
  59. 59.
    Abe H, Harigaya M, Kikkawa Y, Tsuge T, Doi Y. Crystal growth and solid-state structure of poly(lactide) stereocopolymers. Biomacromolecules. 2005;6:457–67.CrossRefGoogle Scholar
  60. 60.
    Pan P, Liang Z, Zhu B, Dong T, Inoue Y. Blending effects on polymorphic crystallization of poly(l-lactide). Macromolecules. 2009;42:3374–80.CrossRefGoogle Scholar
  61. 61.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y. Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules. 2008;41:4296–304.CrossRefGoogle Scholar
  62. 62.
    Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A. 1962;66:13–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ping Song
    • 1
  • Guangyi Chen
    • 1
  • Zhiyong Wei
    • 1
  • Wanxi Zhang
    • 1
  • Jicai Liang
    • 1
  1. 1.School of Automotive EngineeringDalian University of TechnologyDalianChina

Personalised recommendations