Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 2, pp 1291–1296 | Cite as

Thermal and luminescent properties of Eu2+-doped aluminates prepared by the sol–gel method

  • Nataša Čelan Korošin
  • Vojmir Francetič
  • Nataša Bukovec


Alkaline earth aluminates with the overall nominal compositions Ca0.5Sr0.5Al2O4, Ca0.5Mg0.5Al2O4 and Mg0.5Sr0.5Al2O4 doped with 1 mol% of Eu2+ ions were prepared by the modified aqueous sol–gel method. The thermal behaviour of the xerogels was studied by the TG/DSC-MS technique under an argon and a reductive atmosphere (Ar/H2–5 %). Appropriate luminescent efficiency of the materials was achieved after annealing at temperatures lower than those in conventional solid state reactions. All three aluminates are mixtures of at least two phases; the monoclinic phase of CaAl2O4, the hexagonal phase of SrAl2O4 and the cubic phase of MgAl2O4 were identified. Solid solubility was recognised in the Ca0.5Sr0.5Al2O4:Eu2+ composition due to the similar ionic radii of Ca2+ and Sr2+. UV excited luminescence was observed in the blue region (λmax = 441 nm) in the aluminates containing the monoclinic phase of CaAl2O4 and in the green region (λmax = 520 nm) in the Mg0.5Sr0.5Al2O4:Eu2+ composition.


Alkaline earth aluminates Europium Luminescence Sol–gel Thermal decomposition 



Financial support from the Slovenian Research Agency (ARRS), Ljubljana, (P-0134) is gratefully acknowledged. The authors are grateful to Prof. Dr. Anton Meden for helpful discussions about XRD analysis.

Supplementary material

10973_2012_2451_MOESM1_ESM.docx (138 kb)
Fig. S1 TG and DSC curves of xerogels in an argon atmosphere (DOCX 137 kb)


  1. 1.
    Tang Z, Zhang F, Zhang Z, Huang C, Lin Y. Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method. J Eur Ceram Soc. 2000;20:2129–32.CrossRefGoogle Scholar
  2. 2.
    Aitasalo T, Deren P, Holsa J, Jungner H, Krupa J-C, Lastusaari M, Legendziewicz J, Niitykoski J, Strek W. Persistent luminescence phenomena in materials doped with rare earth ions. J Solid State Chem. 2003;171:114–22.CrossRefGoogle Scholar
  3. 3.
    Sharma P, Haranath D, Chander H, Singh S. Green chemistry-mediated synthesis of nanostructures of afterglow phosphor. Appl Surf Sci. 2008;254:4052–5.CrossRefGoogle Scholar
  4. 4.
    Ryu H, Bartwal KS. Photoluminescent Spectra of Nd3+ Co-doped CaAl2O4:Eu2+ blue phosphor. Res Lett Mater Sci. 2007;2007:1–4.CrossRefGoogle Scholar
  5. 5.
    Ayvacıklı M, Ege A, Yerci S, Can N. Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic. J Lumin. 2011;131:2432–9.CrossRefGoogle Scholar
  6. 6.
    Holsa J, Jungner H, Lastusaari M, Niittykoski J. Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+. J Alloys Comp. 2001;323–324:326–30.CrossRefGoogle Scholar
  7. 7.
    Ryu H, Bartwal KS. Enhancement in photoluminescence on Mg substitution in MgxSr1−xAl2O4: Eu, Nd. Open Appl Phys J. 2009;2:1–4.CrossRefGoogle Scholar
  8. 8.
    Maia AS, Stefani R, Kodaira CA, Felinto MCFC, Teotonio EES, Brito HF. Luminescent nanoparticles of MgAl2O4:Eu, Dy prepared by citrate sol–gel method. Opt Mater. 2008;31:440–4.CrossRefGoogle Scholar
  9. 9.
    Yan B, Wu J. Sol–gel composition of multicomponent hybrid precursors to long afterglow of CaxSr1−xAl2O4: Eu2+ phosphors. Mater Lett. 2007;61:4851–3.CrossRefGoogle Scholar
  10. 10.
    Janakova S, Salavcova L, Renaudin G, Filinchuk Y, Boyer D, Boutinaud P. Preparation and structural investigations of sol–gel derived Eu3+-doped CaAl2O4. J Phys Chem Solids. 2007;68:1147–51.CrossRefGoogle Scholar
  11. 11.
    Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J, Saarinen J. Eu2+ doped calcium aluminate coatings by sol–gel methods. Opt Mater. 2005;27:1537–40.CrossRefGoogle Scholar
  12. 12.
    Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J. Sol–gel processed Eu2+-doped alkaline earth aluminates. J Alloys Compd. 2002;341:76–8.CrossRefGoogle Scholar
  13. 13.
    Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J. Comparison of sol–gel and solid-state prepared Eu2+ doped calcium aluminates. Mater Sci. 2002;20:15–20.Google Scholar
  14. 14.
    Escribano P, Marchal M, Sanjuán ML, Alonso-Gutiérrez P, Julián B, Cordoncillo E. Low–temperature synthesis of SrAl2O4 by a modified sol–gel route: XRD and Raman characterization. J Solid State Chem. 2005;178:1978–87.CrossRefGoogle Scholar
  15. 15.
    Xiaolin J, Haijun Z, Yongjie Y, Zhanjie L. Effect of the citrate sol–gel synthesis on the formation of MgAl2O4 ultrafine powder. Mater Sci Eng, A. 2004;379:112–8.CrossRefGoogle Scholar
  16. 16.
    Aitasalo T, Hölsa J, Jungner H, Krupa J-C, Lahtinen M, Lastusaari M, Legendziewicz J, Niitykoski J, Valkonen J. Spectroscopic and structural properties of Ca1−xSrxAl2O4:Eu2+, RE3+ persistent luminescence materials. Radiat Eff Defects S. 2003;158:309–13.CrossRefGoogle Scholar
  17. 17.
    Chen L-T, Hwang C-S, Sun I-L, Chen I-G. Luminescence and chromaticity of alkaline earth aluminate MxSr1−xAl2O4:Eu2+ (M: Ca, Ba). J Lumin. 2006;118:12–20.CrossRefGoogle Scholar
  18. 18.
    Francetič V, Bukovec P. Peptization and Al-Keggin species in alumina sol. Acta Chim Slov. 2008;55:904–8.Google Scholar
  19. 19.
    Mentus S, Jelić D, Grudić V. Lanthanum nitrate decomposition by both temperature programmed heating and citrate gel combustion. J Therm Anal Calorim. 2007;90:393–7.CrossRefGoogle Scholar
  20. 20.
    Małecki A, Gajerski R, Łabuś S, Prochowska-Klisch B, Wojciechowski KT. Mechanism of the thermal decomposition of transition metals nitrates (V). J Therm Anal Calorim. 2000;60:17–23.CrossRefGoogle Scholar
  21. 21.
    Prodjosantoso AK, Kennedy BJ. Solubility of SrAl2O4 in CaAl2O4: a high resolution powder diffraction study. Mater Res Bull. 2003;38:79–87.CrossRefGoogle Scholar
  22. 22.
    Klug HP, Alexander LE. X-ray diffraction procedures. 2nd ed. New York: Wiley; 1974.Google Scholar
  23. 23.
    Blasse B, Grabmaier BC. Luminescent materials. Berlin: Springer; 1994.CrossRefGoogle Scholar
  24. 24.
    Katsumata T, Sakai R, Komuro S, Morikawa T, Kimura H. Growth and characteristics of long duration phosphor crystals. J Cryst Growth. 1999;198–9:869–71.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Nataša Čelan Korošin
    • 1
  • Vojmir Francetič
    • 1
  • Nataša Bukovec
    • 1
  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations