Skip to main content
Log in

Thermal behavior of new oxidizer ammonium dinitramide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ammonium dinitramide (ADN) is a promising new oxidizer for solid propellants because of its high oxygen balance and high energy content, and halogen-free combustion products. One of the characteristics needed for solid propellants is stability. Heat, light, and moisture are factors affecting stability during storage, manufacture, and use. For practical use of ADN as a solid propellant, clarification of the mechanism of decomposition by these factors is needed to be able to predict lifetime. This study focused on thermal decomposition of ADN. Exothermal behavior of ADN decomposition was measured by isothermal tests using high-sensitive calorimetry (TAM) and non-isothermal tests using differential scanning calorimetry (DSC). Based on these results, analysis of the decomposition kinetics was conducted. The activation energy determined by TAM tests was lower than that from DSC tests. Thus, the decomposition path in TAM tests was different from that in DSC tests. The amount of ADN decomposition predicted from TAM tests was closer to that found under real storage conditions than the amount of decomposition predicted from DSC tests. Non-isothermal tests may not be able to precisely predict the lifetime of materials with a decomposition mechanism that changes with temperature, such as ADN. The lifetime predicted from DSC results was much longer than that from TAM tests especially at low temperature. It is necessary to use isothermal tests to predict the long-term stability at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guerya JF, Chang IS, Shimada T, Glick M, Boury D, Robert E, Napior J, Wardle R, Perut C, Calabro M, Glick R, Habu H, Sekino N, Vigier G, Andrea BD. Solid propulsion for space applications: an updated roadmap. Acta Astronaut. 2010;66:201–19.

    Article  Google Scholar 

  2. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD. A review of energetic materials synthesis. Thermochim Acta. 2002;384:187–204.

    Article  CAS  Google Scholar 

  3. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161:589–607.

    Article  CAS  Google Scholar 

  4. Okamoto K, Kohga M, Hasue K. Thermal behavior and tensile property of PTHF/HTPB blend. Sci Technol Energ Mater. 2009;70:87–93.

    CAS  Google Scholar 

  5. Wada Y, Seike Y, Tsuboi N, Hasegawa K, Kobayashi K, Nishioka M, Hori K. Combustion mechanism of tetra-ol glycidyl azide polymer. Sci Technol Energ Mater. 2008;69:143–8.

    CAS  Google Scholar 

  6. Pandey M, Jha S, Kumar R, Mishra S, Jha RR. The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts. J Therm Anal Calorim. 2012;107:135–40.

    Article  CAS  Google Scholar 

  7. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials KNF and NTO. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1845-6.

    Google Scholar 

  8. Xu KZ, Chen YS, Wang M, Luo JA, Song JR, Zhao FQ, Hu RZ. Synthesis and thermal behavior of 4,5-dihydroxyl-2-(dinitromethylene)-imidazolidine (DDNI). J Therm Anal Calorim. 2011;105:293–300.

    Article  CAS  Google Scholar 

  9. Venkatachalam S, Santhosh G, Nian KN. An overview on synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propellants Explos Pyrotech. 2004;29:178–87.

    Article  CAS  Google Scholar 

  10. Santhosh G, Ghee AH. Synthesis and kinetic analysis of isothermal and non-isothermal decomposition of ammonium dinitramide prills. J Therm Anal Calorim. 2008;94:263–70.

    Article  CAS  Google Scholar 

  11. Thomas H, Pontius H, Aniol J, Birke C, Leisinger K, Reihard W. Ammonium dinitramide (ADN)-prilling, coating, and characterization. Propellants Explos Pyrotech. 2009;34:231–8.

    Article  Google Scholar 

  12. Teipel U, Heintz T, Krause HH. Crystallization of spherical ammonium dinitramide (ADN) particles. Propellants Explos Pyrotech. 2000;25:81–5.

    Article  CAS  Google Scholar 

  13. Bottaro JC, Schmidt RJ, Penwell PE, Ross DS. World Intellectual Property Organization, International Application Number PCT/US91/04268, Dec 26, 1991.

  14. Bottaro JC, Penwell PE, Schmitt RJ. 1,1,3,3-Tetraoxo-1,2,3-triazapropene anion, a new oxy anion of nitrogen: the dinitramide anion and its salts. J Am Chem Soc. 1997;119:9405–10.

    Article  CAS  Google Scholar 

  15. Pak Z. Some ways to higher environmental safety of solid rocket propellant application. In: Proceedings of the AIAA/SAE/AS-MEASEE 29th Joint Propulsion Conf and Exhibition. Monterey, CA; 1993.

  16. Matsunaga H, Yoshino S, Kumasaki M, Habu H, Miyake A. Aging characteristics of the energetic oxidizer ammonium dinitramide. Sci Technol Energ Mater. 2011;72:131–5.

    CAS  Google Scholar 

  17. de Klerk WPC, Popescu C, van der Heijden AEDM. Study on the decomposition kinetics of FOX-7 and HNF. J Therm Anal Calorim. 2003;72:955–66.

    Article  Google Scholar 

  18. Boers MN, de Klerk WPC. Lifetime prediction of EC, DPA, akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption. Propellants Explos Pyrotech. 2005;30:356–62.

    Article  CAS  Google Scholar 

  19. de Klerk WPC, Colpa W, van Ekeren PJ. Ageing studies of magnesium–sodium nitrate pyrotechnic compositions. J Therm Anal Calorim. 2006;85:203–7.

    Article  Google Scholar 

  20. Krabbendam-LaHaye ELM, de Klerk WPC, Krämer RE. The kinetic behaviour and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80:495–501.

    Article  CAS  Google Scholar 

  21. Eroglu MS. Thermoanalytical life time testing of energetic poly(glycidyl azide) and its precursor, poly(epichlorodydrin). Polym Bull. 1998;41:69–76.

    Article  CAS  Google Scholar 

  22. Östmark H, Bemm U, Langlet A, Sanden R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater. 2000;18:123–38.

    Article  Google Scholar 

  23. Wingborg N. Ammonium dinitramide–water: interaction and properties. J Chem Eng Data. 2006;51:1582–6.

    Article  CAS  Google Scholar 

  24. Oxley JC, Smith JL, Zheng W, Rogers E, Coburn MD. Thermal decomposition studies on ammonium dinitramide (ADN) and 15N and 2H isotopomers. J Phys Chem A. 1997;101:5646–52.

    Article  CAS  Google Scholar 

  25. Jones DEG, Kwok QSM, Vachon M, Badeen C, Ridley W. Characterization of ADN and ADN-based propellants. Propellants Explos Pyrotech. 2005;30:140–7.

    Article  CAS  Google Scholar 

  26. Advanced Kinetics and Technology Solutions, AKTS-Thermokinetics Software and AKTS-Thermal Safety Software. http://www.akts.com. Accessed 8 March 2012.

  27. Roduit B, Borgeat Ch, Berger B, Folly P, Andres H, Schädeli U, Vogelsanger B. Up-scaling of DSC data of high energetic materials. J Therm Anal Calorim. 2006;85:195–202.

    Article  CAS  Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1963;6:183–95.

    Google Scholar 

  29. Ozawa T. Applicability of Friedman plot. J Therm Anal. 1986;31:546–51.

    Google Scholar 

  30. Bunte G, Neumann H, Antes J, Krause HH. Analysis of ADN, its precursor and possible by-products using ion chromatography. Propellants Explos Pyrotech. 2002;27:119–24.

    Article  CAS  Google Scholar 

  31. Russell TP, Stern AG, Koppes WM, Bedford CD. Thermal decomposition and stabilization of ammonium dinitramide. In: Proceedings of 29th JANNAF combustion subcommittee meeting. 1990; 593-II:339–345.

  32. Gordon S, McBride BJ. Computer program for calculation of complex chemical equilibrium compositions and applications. Washington, DC: NASA Reference Publication 1311; 1996.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Yuji Wada and Dr. Yusuke Wada of National Institute of Advanced Industrial Science and Technology of Japan for their fruitful discussions, and also to Hosoya Pyro-Engineering Co., Ltd. for providing samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Miyake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunaga, H., Habu, H. & Miyake, A. Thermal behavior of new oxidizer ammonium dinitramide. J Therm Anal Calorim 111, 1183–1188 (2013). https://doi.org/10.1007/s10973-012-2441-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2441-0

Keywords

Navigation