Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 445–451 | Cite as

Thermal degradation and evolved gas analysis of epoxy (DGEBA)/novolac resin blends (ENB) during pyrolysis and combustion

  • Tansir Ahamad
  • Saad M. Alshehri
Article

Abstract

The thermal degradation of epoxy (DGEBA) and phenol formaldehyde (novolac) resins blend was investigated by using thermogravimetric analysis (TGA) coupled with Fourier transform infrared spectroscopy and mass spectroscopy. The results of TGA revealed that the thermal degradation process can be subdivided into four stages: drying the sample, fast and second thermal decomposition, and further cracking process of the polymer. The total mass loss of 89.32 mass% at 950 °C is found during pyrolysis, while the polymer during the combustion almost finished at this temperature. The emissions of carbon dioxide, aliphatic hydrocarbons, carbon monoxide, etc., while aromatic products, are emitted at higher temperature during combustion and pyrolysis. It was observed that the intensities of CO2, CO, H2O, etc., were very high when compared with their intensities during pyrolysis, attributed to the oxidation of decomposition product.

Keywords

Epoxy Phenol–formaldehyde resin TG–FTIR–MS Combustion 

Notes

Acknowledgements

This work is supported by Deanship of Scientific Research, Research Center, College of Science, King Saud University, Riyadh.

References

  1. 1.
    May CA. Epoxy resins chemistry and technology, 2nd edition. New York: Marcel Dekker Inc; 1988.Google Scholar
  2. 2.
    Petrie EM. Epoxy adhesive formulations. New York: McGraw-Hill Publishing; 2006.Google Scholar
  3. 3.
    Pham HQ, Marks MJ. Encyclopedia of polymer science and technology. New York: Wiley; 2004.Google Scholar
  4. 4.
    Mitra K. Assessing optimal growth of desired species in epoxy polymerization under uncertainty. Chem Eng J. 2010;162:322–30.CrossRefGoogle Scholar
  5. 5.
    Gu JW, Zhang GC, Dong SL, Zhang QY, Kong J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Technol. 2007;201:7835–41.CrossRefGoogle Scholar
  6. 6.
    Qian LJ, Long JY, Xu GZ, Jing L, Guo JQ. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym Degrad Stab. 2011;96(6):1118–24.CrossRefGoogle Scholar
  7. 7.
    Limei C, Yong Z, Yinxi Z, Xiangfu Z, Wen Z. Electrical properties and conductive mechanisms of immiscible polypropylene/novolac blends filled with carbon black. Eur Polym J. 2007;43(12):5097–106.CrossRefGoogle Scholar
  8. 8.
    Shasha L, Shuhua Q, Nailiang L, Peng C. Study on thermal conductive BN/novolac resin composites. Thermochim Acta. 2011;523(1–2):111–5.Google Scholar
  9. 9.
    Derouet D, Morvan F, Bross JC. Chemical modification of epoxy resins by dialkyl(or aryl) phosphates: evaluation of fire behavior and thermal stability. JAppl Polym Sci. 1996;62(11):1855–68.Google Scholar
  10. 10.
    Tao X, Xiaoming H. A TG–FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. J Anal Appl Pyrol. 2010;87(2):217–23.CrossRefGoogle Scholar
  11. 11.
    Kök MV, Pokol G, Keskin C, Madarasz J, Bagci S. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. J Therm Anal Calorim. 2004;76(1):247–54.CrossRefGoogle Scholar
  12. 12.
    Marisa SC, Martins QV, de Sonia A, Hernane SB, Marcelo K, Clovis AR. Characterization and thermal behavior of residues from industrial sugarcane processing. J Therm Anal Calorim. 2011;106:753–7.CrossRefGoogle Scholar
  13. 13.
    Sikorska MI, Łyszczek RM. Application of coupled TG–FTIR system in studies of thermal stability of manganese(II) complexes with amino acids. J Therm Anal Calorim. 2004;78(2):487–500.CrossRefGoogle Scholar
  14. 14.
    Anca MM, Lucia O, Apostolescu N, Moldoveanu C. TG–FTIR study on thermal degradation in air of some new diazoaminoderivatives. J Therm Anal Calorim. 2010;100(2):615–22.CrossRefGoogle Scholar
  15. 15.
    Madarász J, Pokol G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG–FTIR and TG/DTA–MS instruments. J Therm Anal Calorim. 2007;88:329–36.CrossRefGoogle Scholar
  16. 16.
    Otto K, Bombicz P, Madarász J, Acik IO, Krunks M, Pokol G. Structure and evolved gas analyses (TG/DTA–MS and TG–FTIR) of mer-trichlorotris(thiourea)-indium(III), a precursor for indium sulfide thin films. J. J Therm Anal Calorim. 2011;105:83–91.CrossRefGoogle Scholar
  17. 17.
    Madarász J, Krunks M, Niinisto L, Pokol G. Evolved Gas Analysis of Dichlorobis(thiourea)zinc(II) by Coupled TG–FTIR and TG/DTA–MS Techniques. J Therm Anal Calorim. 2004;78:679–86.CrossRefGoogle Scholar
  18. 18.
    Toldy A, Szabo A, Novak C, Madarasz J, Toth A, Marosi G. Intrinsically flame retardant epoxy resin—Fire performance and background—Part II. Polym Degrad Stab. 2008;93:2007–13.CrossRefGoogle Scholar
  19. 19.
    Tansir A. Alshehri SM, Thermal degradation and evolved gas analysis of thiourea-formaldehyde resin (TFR) during pyrolysis and combustion J. Therm. Anal. Calorim, 2011 (in press).Google Scholar
  20. 20.
    Gibson SL, Baranauskas V, Riffle JS, Sorathia U. Cresol novolac–epoxy networks: properties and processability. Polym. 2002;43(26):7389–98.CrossRefGoogle Scholar
  21. 21.
    Ahamad T, Alshehri S.M, Thermal, microbial, and corrosion resistant metal-containing poly(Schiff) epoxy coatings, J Coat Technol Res 2012. (in press). doi: 10.1007/s11998-011-9393-3.
  22. 22.
    Ahamad T, Nishat N. New antimicrobial epoxy-resin-bearing Schiff-base metal complexes. J Appl Polym Sci. 2008;107(4):2280–9.CrossRefGoogle Scholar
  23. 23.
    Nishat N, Ahmad S, Tansir Ahamad R. Synthesis and characterization of antibacterial polychelates of urea–formaldehyde resin with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. J Appl Polym Sci. 2006;100:928–36.Google Scholar
  24. 24.
    Mocanu AM, Odochian L, Apostolescu N, Moldoveanu C. TG–FTIR study on thermal degradation in air of some new diazoaminoderivatives. J Therm Anal Calorim. 2010;100:615–22.CrossRefGoogle Scholar
  25. 25.
    Tansir A, Kumar V, Nishat N. Synthesis, characterization and antimicrobial activity of transition metal chelated thiourea–formaldehyde resin. Polym Int. 2006;55:1398–406.CrossRefGoogle Scholar
  26. 26.
    Ma SB, Lu J, Gao JS. Study of the low temperature pyrolysis of PVC. Energy Fuel. 2002;16:338–42.CrossRefGoogle Scholar
  27. 27.
    Hao L, Lizhong Z. Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J Hazard Mater. 2007;139:93–198.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of ChemistryKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations