Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 1, pp 349–356 | Cite as

Thermal behaviour of some ester derivatives of p-tert-butyl calix[n]arene

  • A. Saponar
  • E.-J. Popovici
  • I. Perhaita
  • G. Nemes
  • A.-I. Cadis


The thermal behaviour of three ester derivatives of p-tert-butyl calix[n]arene (n = 4, 6 and 8) in comparison with the parent calixarene was investigated by means of the thermogravimetric (TG) and differential thermogravimetic (DTG) analysis and differential scanning calorimetry (DSC). The thermal stability domains, the composition of the pyrolysis products and the thermal effects, were determined on the basis of TG, DTG and DSC plots registered in nitrogen flow. Attempts to analyse the evolved gases by TG-FTIR coupling were also performed. It was demonstrated that the stability of the calix[n]arene derivatives depends on both the size of the hydrophobic cavity and number of the substituting groups grafted on the calix[n]arene skeleton.


p-tert-butyl calix[n]arene Calix[n]arene ester derivatives Thermal analysis Evolved gas analysis 



This work was possible with the financial support of the Sectorial Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the Project No: POSDRU 89/1.5/S/60189 with the title “Postdoctoral programs for sustainable development in a knowledge based society”.


  1. 1.
    Asfari Z, Bohmer V, Harrowfield J, Vicens J. Calixarenes. Dordrecht: Kluwer Academic Publishers; 2001.Google Scholar
  2. 2.
    Gutsche CD, Stoddart JF. Calixarenes Revisited. Cambridge: The Royal Society of Chemistry; 1998.Google Scholar
  3. 3.
    Atanassova M, Vassilev N, Dukov I. p-tert-Butylcalix[4]arene tetrakis(N,N-dimethylacetamide) as a second ligand in the complexation of trivalent lanthanoids with thenoyltrifluoroacetone in solution and investigation of a solid Eu(III) complex. Sep Purif Technol. 2011;78:214–9.CrossRefGoogle Scholar
  4. 4.
    Kulesza J, Guzinski M, Hubscher-Bruder V, Arnaud-Neu F, Bochénska M. Lower rim substituted p-tert-butyl-calix[4]arene. Part 16. Synthesis of 25,26,27,28-tetrakis(piperidinylthiocarbonylmethylene)-p-tert-butylcalix[4]arene and its interaction with metal ions. Polyhedron. 2011;30:98–105.CrossRefGoogle Scholar
  5. 5.
    Yang Y, Lee EK, Zhou H, Surowiec K, Bartsch RA. Synthesis and metal ion extraction of calix[4]arene mono- and diacids with 2-methoxyethoxy pendant groups. J Incl Phenom Macrocycl Chem. 2010;70:197–204. doi: 10.1007/s10847-010-9892-3.CrossRefGoogle Scholar
  6. 6.
    Saponar A, Popovici E-J, Popovici N, Bica E, Nemes G, Petrar P, Silaghi-Dumitrescu I. Narrow-rim alkenyl calix[n]arene. Synthesis and spectral characterization. Rev Chim. 2009;60(3):278–82.Google Scholar
  7. 7.
    Sayin S, Yilmaz M, Tavasli M. Syntheses of two diamine substituted 1,3-distal calix[4]arene-based magnetite nanoparticles for extraction of dichromate, arsenate and uranyl ions. Tetrahedron. 2011;67:3743–53.CrossRefGoogle Scholar
  8. 8.
    Saponar A, Silaghi-Dumitrescu I, Popovici E-J, Popovici N. Synthesis and characterisation of calix[4]arene with different donor groups at the narrow rim. Rev Chim. 2007;58(5):481–3.Google Scholar
  9. 9.
    Saponar A, Popovici E-J, Nemes G, Popovici N, Perhaita I, Silaghi-Dumitrescu I. Synthesis and properties of N,N-diethylacetamido derivatives of p-tert-butyl calix[n]arene. Rev Chim. 2011;62(6):596–600.Google Scholar
  10. 10.
    Saponar A, Popovici E-J, Perhaiţa I, Popovici N, Silaghi-Dumitrescu I. Studies on the europium and palladium extraction with some calix[6]arene derivatives. Stud Univ Babes-Bolyai Chem. 2010;XLV(2):133–43.Google Scholar
  11. 11.
    Enache IV, Mutihac L, Othman AB, Vicens J. Calix[4]azacrowns as ionophores for liquid–liquid extraction and facilitated transport of biological supramolecular complexes. J Incl Phenom Macrocycl Chem. 2011;71:537–43. doi: 10.1007/s10847-011-9944-3.CrossRefGoogle Scholar
  12. 12.
    Tenkovtsev AV, Dudkina MM, Scherbinskaya LI, Aseyev V, Tenhu H. Star-shaped macromolecules with calixarene core and neutral amphiphilic block copolymer arms: new hosts for ions. Polymer. 2010;51:3108–15.CrossRefGoogle Scholar
  13. 13.
    Saponar A, Popovici E-J, Grecu R, Silaghi-Dumitrescu I, Popovici N. Synthesis of ester derivatives of calix[n]arene. Stud Univ Babes-Bolyai Chem. 2009;LIV(4):203–10.Google Scholar
  14. 14.
    Deligöz H. Azocalixarenes: synthesis, characterization, complexation, extraction, absorption properties and thermal behaviours. J Incl Phenom Macrocycl Chem. 2006;55:197–218.CrossRefGoogle Scholar
  15. 15.
    Deligöz H, Özen Ö, Cilgi GK, Cetişli H. A study on the thermal behaviours of parent calix[4]arenes and some azocalix[4]arene derivatives. Thermochim Acta. 2005;426:33–8.CrossRefGoogle Scholar
  16. 16.
    Chennakesavulu K, Raviathul Basariya M, Sreedevi P, Bhaskar Raju G, Prabhakar S, Subba Rao S. Study on thermal decomposition of calix[4]arene and its application in thermal stability of polypropylene. Thermochim Acta. 2011;515:24–31.CrossRefGoogle Scholar
  17. 17.
    Lazzarotto M, Nachtigall FF, Schnitzler E, Castellano EE. Thermo gravimetric analysis of supramolecular complexes of p-tert-butylcalix[6]arene and ammonium cations: crystal structure of diethylammonium complex. Thermochim Acta. 2005;429:111–7.CrossRefGoogle Scholar
  18. 18.
    Mine Sulak AK, Deligöz H. Azocalixarenes. 6: synthesis, complexation, extraction and thermal behaviour of four new azocalix[4]arenes. J Incl Phenom Macrocycl Chem. 2007;59:115–23.CrossRefGoogle Scholar
  19. 19.
    Karakuş ÖÖ, Cilgi GK, Deligöz H. Thermal analysis of two series mono- and di-azocalix[4]arene derivatives. J Therm Anal Calorim. 2011;105:341–7. doi: 10.1007/s10973-011-1331-1.CrossRefGoogle Scholar
  20. 20.
    Gutsche CD, Iqbal M. p-tert-butylcalix[4]arene. Org Synthesis. 1989;68:234–7.Google Scholar
  21. 21.
    Gutsche CD, Dhawan B, Leonis M, Stewart D. p-tert-butylcalix[6]arene. Org Synthesis. 1989;68:238–42.Google Scholar
  22. 22.
    Munch JH, Gutsche CD. p-tert-butylcalix[8]arene. Org Synthesis. 1989;68:243–6.Google Scholar
  23. 23.
    Sokolova MP, Bronnikov SV, Sukhanova TE, Grigor’ev AI, Volkov AYa, Gubanova GN, Kutin AA, Farcas A, Pinteala M, Harabagiu V, Simionescu B. Structure, morphology, and thermal properties of polyrotaxanes based on calix[6]arene and modified polydimetylsiloxane. Russ J Appl Chem. 2001;83(1):109–14.CrossRefGoogle Scholar
  24. 24.
    Chennakesavulu K, Raviathul Basariya M, Bhaskar Raju G, Prabhakar S. Study on thermal decomposition of calix[6]arene and calix[8]arene. J Therm Anal Calorim. 2011;103:853–62.CrossRefGoogle Scholar
  25. 25.
    Schatz J, Schildbach F, Lentz A, Rastätter S. Thermal gravimetry, mass spectrometry and solid-state 13C NMR spectroscopy-simple and efficient methods to characterize the inclusion behaviour of p-tert-butylcalix[n]arenes. Perkin Trans. 2. 1998;1:75–8.CrossRefGoogle Scholar
  26. 26.
    Atwood JL, Barbour LJ, Jerga A. Polymorphism of pure p-tert-butylcalix[4]arene: conclusive identification of the phase obtained by desolvation. Chem Commun. 2002;8(24):2952–3.CrossRefGoogle Scholar
  27. 27.
    Brouwer EB, Enright GDE, Udachin KA, Lang S, Ooms KJ, Halchuk PA, Ripmeester JA. The complex relantionship between guest-free polymorphic products and desolvation of p-tert-butylcalix[4]arene inclusion compounds. Chem Commun. 2003;9(12):1416–7.CrossRefGoogle Scholar
  28. 28.
    Yakimov AV, Ziganshin MA, Gubaidullin AT, Gorbatchuk VV. Metastable tert-butylcalix[6]arene with unusually large tunable free volume for non-threshold enclathration of volatiles. Org Biomol Chem. 2008;6(6):982–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • A. Saponar
    • 1
  • E.-J. Popovici
    • 1
  • I. Perhaita
    • 1
  • G. Nemes
    • 2
  • A.-I. Cadis
    • 1
  1. 1.Raluca Ripan Institute for Research in ChemistryBabes Bolyai UniversityCluj-NapocaRomania
  2. 2.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations