Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 3, pp 837–841 | Cite as

Thermal transport characteristics of polypropylene fiber-based knitted fabrics

  • P. Lizák
  • J. Legerska
  • J. Militký
  • S. C. Mojumdar


Thermal comfort is condition of an organism, when there is no sweating and the mean skin temperature is in the range from 32 to 34 °C (Hes, Measurement of comfort, What can textile III, 2009). Thermal comfort is closely connected with the following characteristics: thermal resistivity and thermal conductivity. Related properties are: resistance against the penetration of water vapor, air permeability, and porosity. The thermal resistivity R (W−1 K m2) and thermal conductivity K (W K−1 m−1) of knitted fabrics containing PP fiber were measured. Measurements were realized on three different types of devices. The experimental results were compared with simple mechanistic model for prediction of thermal conductivity K for textile structures.


Comfort Thermal resistance Thermal conductivity Air permeability Volume porosity Interlock structure 



We wish to thank the Slovak Grant Agency (KEGA: 002 TnUAD 4/2011) for the financial support.


  1. 1.
    Hes L. Measurement of comfort, What can textile III. Liberec: TU Liberec; 2009. p. 47–49. ISBN 978-80-7372-446-0.Google Scholar
  2. 2.
    Jóna E, Lajdova L', Kvasnicová L', Lendvayová S, Pajtášová M, Ondrušová D, Lizák P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands. J Therm Anal Calorim. 2011;104(3):817–21.CrossRefGoogle Scholar
  3. 3.
    Chowdhury B, John ME. Thermal evaluation of bio-engineered cotton. Thermochim Acta. 1998;313:43–53.CrossRefGoogle Scholar
  4. 4.
    Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Thermoanalytical techniques and their applications from medicine to construction part I. J Therm Anal Calorim. 2007;90:653–62.CrossRefGoogle Scholar
  5. 5.
    Tian F, Sun L, Mojumdar SC, Venart JES, Prasad RC. Absolute measurement of thermal conductivity of poly (acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2011;104:823–9.CrossRefGoogle Scholar
  6. 6.
    Chowdhury B, Mojumdar SC. Aspects of thermal conductivity relative to heat flow technique. J Therm Anal Calorim. 2005;81:179–82.CrossRefGoogle Scholar
  7. 7.
    Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94:37–43.CrossRefGoogle Scholar
  8. 8.
    Mojumdar SC, Raki L, Mathis N, Schimdt K, Lang S. Synthesis, thermal conductivity, TG/DTA, AFM, FTIR, 29Si and 13C NMR studies of calcium silicate hydrate—polymer nanocomposite materials. J Therm Anal Calorim. 2006;85:119–24.CrossRefGoogle Scholar
  9. 9.
    Chowdhury B, Orehotsky J. Scope of electron transport studies by thermally stimulated discharge current measurement. J Therm Anal Calorim. 2003;73:53–7.CrossRefGoogle Scholar
  10. 10.
    Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate-poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.CrossRefGoogle Scholar
  11. 11.
    Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FT-IR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90:669–72.CrossRefGoogle Scholar
  12. 12.
    Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, SDC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4—a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86:605–8.CrossRefGoogle Scholar
  13. 13.
    Mojumdar SC, Varshney KG, Agrawal A. Hybrid fibrous ion exchange materials: past, present and future. Res J Chem Environ. 2006;10:89–103.Google Scholar
  14. 14.
    Doval M, Palou M, Mojumdar SC. Hydration behaviour of C2S and C2AS nanomaterials, synthesized by sol–gel method. J Therm Anal Calorim. 2006;86:595–9.CrossRefGoogle Scholar
  15. 15.
    Mojumdar SC, Moresoli C, Simon LC, Legge RL. Edible wheat gluten (WG) protein films: preparation, thermal, mechanical and spectral properties. J Therm Anal Calorim. 2011;104:929–36.CrossRefGoogle Scholar
  16. 16.
    Varshney G, Agrawal A, Mojumdar SC. Pyridine based cerium(IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:731–4.CrossRefGoogle Scholar
  17. 17.
    Mojumdar SC, Melnik M, Jona E. Thermal and spectral properties of Mg(II) and Cu(II) complexes with heterocyclic N-donor ligands. J Anal Appl Pyrolysis. 2000;53:149–60.CrossRefGoogle Scholar
  18. 18.
    Mošner P, Vosejpková K, Koudelka L, Beneš L. Thermal studies of ZnO–B2O3–P2O5–TeO2 glasses. J Therm Anal Calorim. 2012;107:1129–35.CrossRefGoogle Scholar
  19. 19.
    Meenakshisundarm SP, Parthiban S, Madhurambal G, Mojumdar SC. Effect of chelating agent (1,10-phenanthroline) on potassium hydrogen phthalate crystals. J Therm Anal Calorim. 2008;94:21–5.CrossRefGoogle Scholar
  20. 20.
    Rejitha KS, Mathew S. Investigations on the thermal behavior of hexaamminenickel(II) sulphate using TG-MS and TR-XRD. Glob J Anal Chem. 2010;1(1):100–8.Google Scholar
  21. 21.
    Pajtášová M, Ondrušová D, Jóna E, Mojumdar SC, L'alíková S, Bazyláková T, Gregor M. Spectral and thermal characteristics of copper(II) carboxylates with fatty acid chains and their benzothiazole adducts. J Therm Anal Calorim. 2010;100:769–77.CrossRefGoogle Scholar
  22. 22.
    Madhurambal G, Ramasamy P, Anbusrinivasan P, Vasudevan G, Kavitha S, Mojumdar SC. Growth and characterization studies of 2-bromo-4′-chloro-acetophenone (BCAP) crystals. J Therm Anal Calorim. 2008;94:59–62.CrossRefGoogle Scholar
  23. 23.
    Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterisation of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim. 2011;104:869–73.CrossRefGoogle Scholar
  24. 24.
    Raileanu M, Todan L, Crisan M, Braileanu A, Rusu A, Bradu C, Carpov A, Zaharescu M. Sol–gel materials with pesticide deliveryproperties. J Environ Protect. 2010;1:302–13.CrossRefGoogle Scholar
  25. 25.
    Varshney KG, Agrawal A, Mojumdar SC. Pectin based cerium(IV) and thorium(IV) phosphates as novel hybrid fibrous ion exchangers synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2005;81:183–9.CrossRefGoogle Scholar
  26. 26.
    Mojumdar SC, Šimon P, Krutošíková A. [1]Benzofuro[3, 2-c]pyridine: synthesis and coordination reactions. J Therm Anal Calorim. 2009;96:103–9.CrossRefGoogle Scholar
  27. 27.
    Moricová K, Jóna E, Plško A, Mojumdar SC. Thermal stability of Li2O–SiO2–TiO2 gels evaluated by the induction period of crystallization. J Therm Anal Calorim. 2010;100:817–20.CrossRefGoogle Scholar
  28. 28.
    Mojumdar SC, Miklovic J, Krutosikova A, Valigura D, Stewart JM. Furopyridines and furopyridine-Ni(II) complexes—synthesis, thermal and spectral characterization. J Therm Anal Calorim. 2005;81:211–5.CrossRefGoogle Scholar
  29. 29.
    Vasudevan G, AnbuSrinivasan P, Madhurambal G, Mojumdar SC. Thermal analysis, effect of dopants, spectral characterisation and growth aspects of KAP crystals. J Therm Anal Calorim. 2009;96:99–102.CrossRefGoogle Scholar
  30. 30.
    Murárová A. Physiology of clothing. Men’s thermal regulation. Vlákna a textil. 2001;8(1):48–9.Google Scholar
  31. 31.
    Lizák P. Structure of yarn and its influence on properties of fabrics. čas. Vlákna a textil. 1998;5(4):213–21.Google Scholar
  32. 32.
    Šnírcová S, Jóna E, Janík R, Lajdová L', Lendvayová S, Loduhová M, Šutinská V, Durný R, Lizák P, Mojumdar SC. Co(II)-exchanged montmorillonite with ethylenediamine, trimethyl- and tetramethyl-ethylenediamine and their thermal decomposition. J Therm Anal Calorim. 2011;104:937–41.CrossRefGoogle Scholar
  33. 33.
    Lizák P, Legerská J, Koiš V. Thermal characteristics of textile fabrics. CD ROM. In: The 13th international conference on problems of materials engineering, mechanics and design [elektronický zdroj]. Púchov: TnUAD-FPT; 2008. ISBN 978-80-969728-2-1.Google Scholar
  34. 34.
    Lizák P, Legerská J, Koiš V. Dependency thermal resistance on the web thickness [elektronický zdroj]. In: Proceedings of the 9th autex conference (Autex 2009), CD ROM. Izmir, Turkey: Ege University, Department of Textile Engineering; 2009. p. 430–35. ISBN 978-975-483-787-2.Google Scholar
  35. 35.
    Lizák P. Textiles for army. In: International conference on military technologies 2007 ( ICMP 2007). Brno: ICMP; 2007. p. 661–66. ISBN 978-80-7231-238-2.Google Scholar
  36. 36.
    Lizák P. Correlation dependence on yarn diameter. čas. Vlákna a textil. 1998;5(4):221–7.Google Scholar
  37. 37.
    Farnworth B. Mechanisms of heat flow through clothing insulation. Text Res J. 1983;53:717–25.CrossRefGoogle Scholar
  38. 38.
    Lizák P. Evaluation methods of materials structure. Krakow : Towarzystwo Slowaków w Polsce; 2011. ISBN 978-83-7490-384-4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • P. Lizák
    • 1
  • J. Legerska
    • 1
  • J. Militký
    • 2
  • S. C. Mojumdar
    • 3
    • 4
  1. 1.Faculty of Industrial Technologies Alexander Dubček University of TrenčínPúchovSlovakia
  2. 2.Deparment of Textile Materials, Faculty of TextileTechnical University of LiberecLiberecCzech Republic
  3. 3.Department of ChemistryUniversity of GuelphGuelphCanada
  4. 4.Department of Chemical Technologies and Environment, Faculty of Industrial TechnologiesAlexander Dubček University of TrenčínPúchovSlovakia

Personalised recommendations