Journal of Thermal Analysis and Calorimetry

, Volume 109, Issue 3, pp 1177–1183 | Cite as

Study of gypsum by PDSC

  • Jorge López-Beceiro
  • Carlos Gracia-Fernández
  • Javier Tarrío-Saavedra
  • Silvia Gómez-Barreiro
  • Ramón Artiaga


Calcium sulfate dihydrate has been widely characterized by both differential scanning calorimetry and thermogravimetry (TG). Two dehydration processes were reported to be partially overlapping. High resolution TG and water vapor self generated atmosphere pin-hole lid strategies were used to increase the resolution of both dehydration processes. In this study, isobaric experiments were carried out in a pressure differential scanning calorimetry cell. The approach consisted in combining the pin-hole lid with different pressures with nitrogen atmosphere. Resolution was improved at moderately low pressures. At higher pressures other processes were observed.


Gypsum PDSC Pressure Crystallization Vapor Water 



This study was partially funded by the Spanish Ministerio de Educacion y Ciencia MTM2008-00166 and MAT2010-21342-C02-01.


  1. 1.
    Groves AW. Gypsum and anhydrite. London: Her Majesty’s Stationery Office; 1958. p. 108.Google Scholar
  2. 2.
    Taylor HFW. Cement chemistry. London: Academic Press; 1990. p. 233.Google Scholar
  3. 3.
    Belmiloudi A, Le Meur G. Mathematical and numerical analysis of dehydration of gypsum plasterboards exposed to fire. Appl Math Comput. 2005;163:1023–41.CrossRefGoogle Scholar
  4. 4.
    Ramachandran VS. Applications of differential thermal analysis in cement chemistry. New York: Chemical Publishing Co Inc.; 1969. p. 251–270.Google Scholar
  5. 5.
    Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2011;104:661–9.CrossRefGoogle Scholar
  6. 6.
    Lopez-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrio-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2011;104:127–30.CrossRefGoogle Scholar
  7. 7.
    Khalil AA, Hussein AT, Gad GM. On the thermochemistry of gypsum. J Appl Chem Biotech. 1971;21:314–6.CrossRefGoogle Scholar
  8. 8.
    Molony B, Ridge MJ. Kinetics of the dehydration of calcium sulphate dihydrate in vacuo. Aust J Chem. 1968;21:1963–5.CrossRefGoogle Scholar
  9. 9.
    Ball MC, Norwood LS. Studies in the system calcium sulphate–water. Part I. Kinetics of dehydration of calcium sulphate dihydrate. J Chem Soc A. 1969;0:1633–7.CrossRefGoogle Scholar
  10. 10.
    Fatu D. Kinetics of gypsum dehydration. J Therm Anal Cal. 2001;65:213–20.CrossRefGoogle Scholar
  11. 11.
    Lehman H, Rieke K. Investigations of the system CaSO4–H2O under special considerations of material and experimental parameters by differential thermal analysis. Proceedings of the 4th international conference on thermal analysis. Budapest; 1975;1:573–83.Google Scholar
  12. 12.
    Dantas HF, Mendes RAS, Pinho RD, Soledade LEB, Paskocimas CA, Lira BB, Schwartz MOE, Souza AG, Santos IMG. Characterization of gypsum using TMDSC. J Therm Anal Cal. 2007;87:691–5.CrossRefGoogle Scholar
  13. 13.
    Tydlitát V, Medveď I, Černý R. Determination of a partial phase composition in calcined gypsum by calorimetric analysis of hydration kinetics. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1334-y.
  14. 14.
    Clifton JR. Thermal analysis of calcium sulfate dihydrate and supposed a and b forms of calcium sulfate from 25 to 500 °C. J Res Natl Bur Stand-A. 1972;76A:41–9.CrossRefGoogle Scholar
  15. 15.
    Comodi P, Kurnosov A, Nazzareni S, Dubrovinsky L. The dehydration process of gypsum under high pressure. Phys Chem Miner. 2012;39:65–71.Google Scholar
  16. 16.
    Ramachandran VS. Concrete admixtures handbook. New Delhi: Standard Publishers; 2002.Google Scholar
  17. 17.
    Ramachandran VS. Handbook of thermal analysis of construction materials. Norwich: Noyes Publications/William Andrew Pub; 2003.Google Scholar
  18. 18.
    Suwardie J, Artiaga R, Barbadillo F. Simultaneous thermal analysis of hexahydrophtalic anhydride. Thermochim Acta. 2002;392:289–94.CrossRefGoogle Scholar
  19. 19.
    Elliot C. Plaster of Paris technology. Chem Trade J. 1923;72:725–6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Jorge López-Beceiro
    • 1
  • Carlos Gracia-Fernández
    • 2
  • Javier Tarrío-Saavedra
    • 3
  • Silvia Gómez-Barreiro
    • 4
  • Ramón Artiaga
    • 1
  1. 1.Higher Polytechnic School, Campus de EsteiroUniversity of A CoruñaFerrolSpain
  2. 2.Thermal Analysis, Rheology and Microcalorimetry Applications, TA Instruments—Waters Cromatografía, S.A. Avda. EuropaAlcobendasSpain
  3. 3.Faculty of Business and Economics, Campus de ElviñaUniversity of A CoruñaA CoruñaSpain
  4. 4.Department of Applied Physics, CESUGAUniversity College of DublinA CoruñaSpain

Personalised recommendations