Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 597–603 | Cite as

Bisthiourea: thermal and structural investigation

  • Pramod B. Pansuriya
  • Hitesh M. Parekh
  • Holger B. Friedrich
  • Glenn E. M. Maguire
Article

Abstract

Bisthiourea derivatives 1,1′-(ethane-1,2-diyl)bis(3-phenylthiourea), 1,1′-(propane-1,3-diyl)bis(3-phenylthiourea), and 1,1′-(butane-1,4-diyl)bis(3-phenylthiourea) have been synthesized and characterized by IR, 1H NMR, and 13C NMR. Suitable crystals of 1,1′-(propane-1,3-diyl)bis(3-phenylthiourea) were grown for single-crystal X-ray analysis and from the data it was observed that they organize into the P-1 space group. The thermal decomposition of these compounds has been studied by TG–DSC.

Keywords

Bisthiourea derivatives Crystal structure Thermal decomposition 

Notes

Acknowledgements

The authors wish to thank Dr. Hong Su from the Chemistry Department of the University of Cape Town and Dr. Manuel Fernandes from the Chemistry Department of the University of the Witwatersrand for their assistance with the X-ray data collection and refinement and the DST—National Research Foundation, Centre of Excellence in Catalysis, c*change, for financial support. PBP would like to thank UKZN for funding his post-doctorate fellowship.

References

  1. 1.
    Wittkopp A, Schreiner PR. Metal-free, noncovalent catalysis of Diels–Alder reactions by neutral hydrogen bond donors in organic solvents and in water. Chem Eur J. 2003;9(2):407–14.CrossRefGoogle Scholar
  2. 2.
    Li X, Deng H, Luo S, Cheng J-P. Organocatalytic three-component reactions of pyruvate, aldehyde and aniline by hydrogen-bonding catalysts. Eur J Org Chem. 2008;25:4350–6.CrossRefGoogle Scholar
  3. 3.
    Sharma SK, Wu Y, Steinbergs N, Crowley ML, Hanson AS, Casero RA, et al. (Bis)urea and (Bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J Med Chem. 2010;53(14):5197–212.CrossRefGoogle Scholar
  4. 4.
    Abdallah R, Breuzard JAJ, Bonnet MC, Lemaire M. Phosphite and thiourea ligand synergy for rhodium catalyzed enantioselective hydroformylation of styrene. J Mol Catal A. 2006;249(1–2):218–22.Google Scholar
  5. 5.
    Karamé I, Lorraine Tommasino M, Lemaire M. N, N- and N, S-ligands for the enantioselective hydrosilylation of acetophenone with iridium catalysts. J Mol Catal A. 2003;196(1–2):137–43.Google Scholar
  6. 6.
    Nan Y, Miao H, Yang Z. A new complex of palladium–thiourea and carbon tetrabromide catalyzed carbonylative annulation of o-hydroxylarylacetylenes: efficient new synthetic technology for the synthesis of 2,3-disubstituted benzo[b]furans. Org Lett. 2000;2(3):297–9.CrossRefGoogle Scholar
  7. 7.
    Breuzard JAJ, Tommasino ML, Touchard F, Lemaire M, Bonnet MC. Thioureas as new chiral ligands for the asymmetric hydroformylation of styrene with rhodium(I) catalysts. J Mol Catal A. 2000;156(1–2):223–32.Google Scholar
  8. 8.
    Park J, Lang K, Abboud KA, Hong S. Self-assembly approach toward chiral bimetallic catalysts: bis-urea-functionalized (salen)cobalt complexes for the hydrolytic kinetic resolution of epoxides. Chem Eur J. 2011;17(7):2236–45.CrossRefGoogle Scholar
  9. 9.
    Tommasino ML, Casalta M, Breuzard JAJ, Lemaire M. Asymmetric hydrogenation of enamides with catalysts containing chiral thiourea ligands. Tetrahedron Asymmetry. 2000;11(24):4835–41.CrossRefGoogle Scholar
  10. 10.
    Reinoso García MM, Verboom W, Reinhoudt DN, Malinowska E, Pietrzak M, Wojciechowska D. Heavy metal complexation by N-acyl(thio)urea-functionalized cavitands: synthesis, extraction and potentiometric studies. Tetrahedron. 2004;60(49):11299–306.CrossRefGoogle Scholar
  11. 11.
    Leung AN, Degenhardt DA, Bühlmann P. Effect of spacer geometry on oxoanion binding by bis- and tetrakis-thiourea hosts. Tetrahedron. 2008;64(11):2530–6.CrossRefGoogle Scholar
  12. 12.
    Ahmed N, Geronimo I, Hwang I-C, Singh NJ, Kim KS. Cyclo-bis(urea-3,6-dichlorocarbazole) as a chromogenic and fluorogenic receptor for anions and a selective sensor of zinc and copper cations. Chem Eur J. 2011;17(31):8542–8.CrossRefGoogle Scholar
  13. 13.
    Vos MRJ, Leclere PELG, Meekes H, Vlieg E, Nolte RJM, Sommerdijk NAJM. Kinetic switching between two modes of bisurea surfactant self-assembly. Chem Commun. 2010;46(33):6063–5.CrossRefGoogle Scholar
  14. 14.
    Dawn S, Dewal MB, Sobransingh D, Paderes MC, Wibowo AC, Smith MD, et al. Self-assembled phenylethynylene bis-urea macrocycles facilitate the selective photodimerization of coumarin. J Am Chem Soc. 2011;133(18):7025–32.CrossRefGoogle Scholar
  15. 15.
    Mariappan M, Madhurambal G, Ravindran B, Mojumdar S. Thermal, FTIR and microhardness studies of bisthiourea-urea single crystal. J Therm Anal Calorim. 2011;104(3):915–21.CrossRefGoogle Scholar
  16. 16.
    Ramamurthi K, Madhurambal G, Ravindran B, Mariappan M, Mojumdar S. The growth and characterization of a metal organic crystal, potassium thiourea thiocyanide. J Therm Anal Calorim. 2011;104(3):943–7.CrossRefGoogle Scholar
  17. 17.
    Madhurambal G, Mariappan M, Ravindran B, Mojumdar S. Thermal and FTIR spectral studies in various proportions of urea thiourea mixed crystal. J Therm Anal Calorim. 2011;104(3):885–91.CrossRefGoogle Scholar
  18. 18.
    Bruker. APEX2, SAINT and SAINT + (includes XPREP and SADABS). Bruker AXS Inc., Madison, WI, 2006.Google Scholar
  19. 19.
    Sheldrick GM. SHELXL97. Germany: University of Göttingen; 1997.Google Scholar
  20. 20.
    Sheldrick G. A short history of SHELX. Acta Cryst A. 2008;64(1):112–22.CrossRefGoogle Scholar
  21. 21.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42(2):339–41.CrossRefGoogle Scholar
  22. 22.
    Mandelkern L. Crystallization of polymers. New York: Mcgraw-Hill; 1964.Google Scholar
  23. 23.
    Aly KI. New polymer syntheses VIII. Synthesis, characterization and morphology of new unsaturated copolyesters based on dibenzylidenecycloalkanones. Polym Int. 1998;47(4):483–90.CrossRefGoogle Scholar
  24. 24.
    Pansuriya PB, Friedrich HB, Maguire GEM. 1,1′-(Ethane-1,2-diyl)bis(3-phenylthiourea). Acta Cryst E. 2011;67(11):o2819.CrossRefGoogle Scholar
  25. 25.
    Pansuriya P, Friedrich HB, Maguire GEM. 3,3′-Diphenyl-1,1′-(butane-1,4-diyl)dithiourea. Acta Cryst E. 2011;67(9):o2380.CrossRefGoogle Scholar
  26. 26.
    Pansuriya P, Naidu H, Friedrich HB, Maguire GEM. 1,1′-(Propane-1,3-diyl)bis(3-phenylurea). Acta Cryst E. 2011;67(10):o2552.CrossRefGoogle Scholar
  27. 27.
    Roviello A, Sirigu A. Poly[oxytetradecanedioyloxy-1,4-phenylene-(2-methylvinylene)-1,4-phenylene]. A polymer showing monotropic mesomorphism. Die Makromol Chem. 1979;180(10):2543–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Pramod B. Pansuriya
    • 1
  • Hitesh M. Parekh
    • 1
  • Holger B. Friedrich
    • 1
  • Glenn E. M. Maguire
    • 1
  1. 1.School of ChemistryUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations