Skip to main content
Log in

Determination of thermophysical properties of high temperature alloy IN713LC by thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The presented paper deals with the study of thermophysical properties of cast and complex alloyed nickel based on superalloy Inconel 713LC (IN713LC). In this work, the technique of Differential Thermal Analysis was selected for determination of the phase transformation temperatures and for the study of the effect of varying heating/cooling rate at these temperatures. The samples taken from as-received state of superalloy were analysed at heating and cooling rates of 1, 5, 10, 20 and 50 °C min−1 with the help of the experimental system Setaram SETSYS 18TM. Moreover, the transformation temperatures at zero heating/cooling rate were calculated. The recommended values for IN713LC after correcting to a zero heating rate, are 1,205 °C (T γ′,solvus), 1,250 °C (solidus) and 1,349 °C (liquidus). Influence of heating/cooling rate on shift of almost all temperatures of phase transformations was established from the DTA curves. Undercooling was observed at the cooling process. The samples before and after DTA analysis were also subjected to the phase analysis by scanning electron microscopy using the microscope JEOL JSM-6490LV equipped with an energy dispersive analyser EDAX (EDS INCA x-act). Documentation of the microstructure was made in the mode of secondary (SEI) and backscattered (BEI) electron imaging. On the basis of DTA analysis and phase analysis it may be stated that development of phase transformations of the alloy IN713LC will probably correspond to the following scheme: melting → γ phase; melting → γ + MC; melting → eutectics γ/γ′; melting → γ + minority phases (e.g. borides); and matrix γ → γ′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Durand-Charre M. The microstructure of superalloys. Amsterdam: OPA; 1997.

    Google Scholar 

  2. Davis JR. Nickel, cobalt and their alloys. Ohio: ASM International; 2000.

    Google Scholar 

  3. Chapman LA. Application of high temperature DSC technique to nickel based superalloys. J Mater Sci. 2004;39:7229–36.

    Article  CAS  Google Scholar 

  4. Zupanič F, Bončina T, Križman A, Tichelaar FD. Structure of continuously cast Ni-based superalloy inconel 713C. J Alloy Compd. 2001;329:290–7.

    Article  Google Scholar 

  5. Antonsson T, Fredriksson H. The effect of cooling rate on the solidification of INCONEL 718. Metall Mater Trans. 2005;36B:85–96.

    CAS  Google Scholar 

  6. Smetana B, Zlá S, Dobrovská J, Kozelský P. Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA. Int J Mater Res. 2010;101:398–408.

    Article  CAS  Google Scholar 

  7. Zlá S, Dobrovská J, Smetana B, Žaludová M, Vodárek V, Konečná K. Differential thermal analysis and phase analysis of nickel based super-alloy IN 738LC. Metal 2010: 19th international metallurgical and materials Conference. 2010;790–95.

  8. Zlá S, Dobrovská J, Smetana B, Žaludová M, Vodárek V, Konečná K. Thermophysical and structural study of IN 792–5A nickel based superalloy. Metalurgija. 2012;51(1):83–6.

    Google Scholar 

  9. Smetana B, Žaludová M, Zlá S, Dobrovská J, Cagala M, Szurman I, Petlák D. Application of high temperature DTA technique to Fe based systems. METAL 2010: 19th International metallurgical and materials conference. 2010:357–62.

  10. Petrenec M, Obrtlík K, Polák J. High temperature low cycle fatigue of superalloys Inconel 713LC and Inconel 792–5A. Key Eng Mater. 2007;348–349:101–4.

    Article  Google Scholar 

  11. Gallagher PK. Handbook of thermal analysis and calorimetry: principles and practice. 2nd ed. Amsterdam: Elsevier; 2003.

    Google Scholar 

  12. Wacławska I, Szumera M. Use of thermal analysis in the study of soil Pb immobilization. J Therm Anal Calorim. 2010;99:873–7.

    Article  Google Scholar 

  13. Lazau I, Pacurariu C, Babut R. The use of thermal analysis in the study of Ca3Al2O6 formation by the polymeric precursor method. J Therm Anal Calorim. 2011;105:427–34.

    Article  CAS  Google Scholar 

  14. Ojo OA, Richards NL, Chaturvedi MC. On incipient melting during high temperature heat treatment of cast Inconel 738 superalloy. J Mater Sci. 2004;39:7401–4.

    Article  CAS  Google Scholar 

  15. Seo SM, Kim IS, Lee JH, Jo CY, Miyahara H, Ogi K. Eta phase and boride formation in directionally solidified Ni-base superalloy IN792 + Hf. Metall Mater Trans. 2007;38A:883–93.

    Article  CAS  Google Scholar 

  16. Ojo OA, Richards NL, Chaturvedi MC. Study of the fusion zone and heat-affected microstructures in tungsten inert gas-welded INCONEL 738LC superalloy. Metall Mater Trans. 2006;37A:421–33.

    Article  CAS  Google Scholar 

  17. Lekstrom M, D′Souza N, Dong HB, Ardakani MG, Shollock BA. Solidification kinetics in the Ni-base superalloy IN713LC. TMS (Miner, Metal Mater Soc). 2007:29–33.

  18. D′Souza N, Lekstrom M, Dai HJ, Shollock BA, Dong HB. Quantitative characterisation of last stage solidification in nickel base superalloy using enthalpy based method. Mater Sci Technol. 2007;23:1085–92.

    Article  Google Scholar 

  19. Mills KC, Youssef YM, Li Z. The effect of aluminium content on thermophysical properties of Ni-based superalloys. ISIJ Int. 2006;46:50–7.

    Article  CAS  Google Scholar 

  20. Mills KC, Youssef YM, Li Z, Su Y. Calculation of thermophysical properties of Ni-based superalloys. ISIJ Int. 2006;46:623–32.

    Article  CAS  Google Scholar 

  21. MTDATA. http://www.npl.co.uk/science-technology/advanced-materials/measurement-techniques/mtdata/. Accessed 20 Oct 2011.

  22. Thermo-Calc Software. http://www.thermocalc.com/. Accessed 20 Oct 2011.

  23. D′Souza N, Dong HB, Ardakani MG, Shollock BA. Solidification path in the Ni-base superalloy, IN713 LC—quantitative correlation of last stage solidification. Scr Mater. 2005;53:729–33.

    Article  Google Scholar 

  24. Ojo OA, Richards NL, Chaturverdi MC. Microstructural study of weld fusion zone of TIG welded IN 738LC Nickel-based superalloy. Scr Mater. 2004;51:683–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the project of the Ministry of Education, Youth and Sports of the Czech Republic No. MSM6198910013, and of the project of the Ministry of Industry and Trade No. FR-TI3/077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Zlá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlá, S., Smetana, B., Žaludová, M. et al. Determination of thermophysical properties of high temperature alloy IN713LC by thermal analysis. J Therm Anal Calorim 110, 211–219 (2012). https://doi.org/10.1007/s10973-012-2304-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2304-8

Keywords

Navigation