Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 483–490 | Cite as

Synthesis and characterisation of Co(II), Ni(II), Zn(II) and Cd(II) complexes with 5-bromo-N,N′-bis-(salicylidene)-o-tolidine

  • Ionela Alan
  • Angela Kriza
  • Mihaela Badea
  • Nicolae Stanica
  • Rodica Olar


New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.


5-bromosalicylaldehyde Complex 3,3′-dimethylbenzidine Schiff base Thermal behaviour 


  1. 1.
    Vigato PA, Tamburini S. Advances in acyclic compartmental ligands and related complexes. Coord Chem Rev. 2008;252:1871–995.CrossRefGoogle Scholar
  2. 2.
    Park S, Mathur VK, Planalp RP. Syntheses, solubilities and oxygen absorption properties of new cobalt(II) Schiff-base complexes. Polyhedron. 1998;17:325–30.CrossRefGoogle Scholar
  3. 3.
    Lee NH, Byun JC, Baik JS, Han C-H, Han S-b. Development of Mn(III) (Schiff Base) complexes for the catalyst of olefin oxygenation to alcohols in the presence of NaBH4. Bull Korean Chem Soc. 2002;23:1365–6.CrossRefGoogle Scholar
  4. 4.
    Mardani HR, Golchoubian H. Selective and efficient C–H oxidation of alkanes with hydrogen peroxide catalyzed by a manganese(III) Schiff base complex. J Mol Cat A Chem. 2006;259:197–200.CrossRefGoogle Scholar
  5. 5.
    Kwiatkowski E, Romanowski G, Nowicki W, Kwiatkowski M, Suwińska K. Chiral dioxovanadium(V) complexes with single condensation products of 1,2-diaminocyclohexane and aromatic o-hydroxycarbonyl compounds: synthesis, characterization, catalytic properties and structure. Polyhedron. 2007;26:2559–68.CrossRefGoogle Scholar
  6. 6.
    Maurya MR, Chandrakar AK, Chand S. Zeolite-Y encapsulated metal complexes of oxovanadium(VI), copper(II) and nickel(II) as catalyst for the oxidation of styrene, cyclohexane and methyl phenyl sulfide. J Mol Cat A Chem. 2007;274:192–201.CrossRefGoogle Scholar
  7. 7.
    Ourari A, Baameur L, Khan MA, Bouet G. Is the electrocatalytic epoxidation of stilbene isomers using manganese (III) tetradentate Schiff bases complexes stereoselective? Electrochem Commun. 2008;10:1736–9.CrossRefGoogle Scholar
  8. 8.
    Roy P, Nandi M, Manassero M, Riccó M, Mazzani M, Bhaumik A, Banerjee P. Four μ4-oxo-bridged copper(II) complexes: magnetic properties and catalytic applications in liquid phase partial oxidation reactions. Dalton Trans. 2009;43:9543–54.CrossRefGoogle Scholar
  9. 9.
    Ourari A, Khelafi M, Aggoun D, Bouet G, Khan MA. Synthesis, characterization, and electrochemical study of tetradentate ruthenium-Schiff base complexes: dioxygen activation with a cytochrome P450 model using 1- or 2-methylimidazole as axial bases. Adv Phys Chem. 2011;. doi: 10.1155/2011/157484.Google Scholar
  10. 10.
    Gupta KC, Sutar AK. Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev. 2008;252:1420–50.CrossRefGoogle Scholar
  11. 11.
    Krishnaraj S, Muthukumar M, Viswanathamurthi P, Sivakumar S. Studies on ruthenium(II) Schiff base complexes as catalysts for transfer hydrogenation reactions. Trans Met Chem. 2008;33:643–8.CrossRefGoogle Scholar
  12. 12.
    Burrows CJ, Muller JG, Poulter GT, Rokita SE. Nickel-catalyzed oxidations: from hydrocarbons to DNA. Acta Chem Scand. 1996;50:337–44.CrossRefGoogle Scholar
  13. 13.
    Firdausa F, Fatmaa K, Azama M, Khanb SN, Khanb AU, Shakir M. Template synthesis and physico-chemical characterization of 14-membered tetraimine macrocyclic complexes, [MLX2] [M=Co(II), Ni(II), Cu(II) and Zn(II)]. DNA binding study on [CoLCl2] complex. Spectrochim Acta Part A. 2009;72:591–6.CrossRefGoogle Scholar
  14. 14.
    Shakira M, Azama M, Parveena S, Khanb AU, Firdaus F. Synthesis and spectroscopic studies on complexes of N,N′-bis-(2-pyridinecarboxaldimine)-1,8-diaminonaphthalene (L); DNA binding studies on Cu(II) complex. Spectrochim Acta Part A. 2009;71:1851–6.CrossRefGoogle Scholar
  15. 15.
    Shakir M, Khanam S, Azam M, Aatif M, Firdaus F. Template synthesis and spectroscopic characterization of 16-membered [N4] Schiff-base macrocyclic complexes of Co(II), Ni(II), Cu(II), and Zn(II): in vitro DNA-binding studies. J Coord Chem. 2011;64:3158–68.CrossRefGoogle Scholar
  16. 16.
    Ourari A, Ouari K, Khan MA, Bouet G. Dioxygen activation with a cytochrome P450 model. characterization and electrochemical study of new unsymmetrical tetradentate Schiff-base complexes with iron(III) and cobalt(II). J Coord Chem. 2008;61:3846–59.CrossRefGoogle Scholar
  17. 17.
    Nakamura T, Niwa K, Fujiwara M, Matsushita T. Novel dinuclear manganese(III) complexes with tridentate and bridging tetradentate Schiff base ligands: preparation. properties and catalase-like function. Chem Lett. 1999;10:1067–8.CrossRefGoogle Scholar
  18. 18.
    Dede B, Karipcin F, Cengiz M. Novel homo- and hetero-nuclear copper(II) complexes of tetradentate Schiff bases: synthesis, characterization, solvent-extraction and catalase-like activity studies. J Hazard Mat. 2009;163:1148–56.CrossRefGoogle Scholar
  19. 19.
    Halcrow MA, Christou G. Biomimetic chemistry of nickel. Chem Rev. 1994;94:2421–81.CrossRefGoogle Scholar
  20. 20.
    Zhang J, Xie J-q, Tang Y, Li J, Li J-z, Zeng W, Hu C-w. Hydrolysis of phosphate diester catalysed by transition metal complexes of a salicylaldimine Schiff base bearing dibenzo-18-crown-6. J Chem Res. 2005;2005:130–4.CrossRefGoogle Scholar
  21. 21.
    Szłyk E, Wojtczak A, Surdykowski A, Gozdzikiewicz M. Five-coordinate zinc(II) complexes with optically active Schiff bases derived from (1R,2R)-(-)cyclohexanediamine: X-ray structure and CP MAS NMR characterization of [cyclohexylenebis(5-chlorosalicylideneiminato)zinc(II)pyridine] and [cyclohexylenebis(5-bromosalicylideneiminato)zinc(II)pyridine]. Inorg Chim Acta. 2005;358:467–75.CrossRefGoogle Scholar
  22. 22.
    Mitra K, Biswas S, Lucas CR, Adhikary B. Manganese(III) complexes of N2O2 donor 5-bromosalicylideneimine ligands: combined effects of electron withdrawing substituents and chelate ring size variations on electrochemical properties. Inorg Chim Acta. 2006;359:1997–2003.CrossRefGoogle Scholar
  23. 23.
    El-Sherif AA, Eldebss TMA. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene. Spectrochim Acta Part A. 2011;79:1803–14.CrossRefGoogle Scholar
  24. 24.
    Garoufis A, Hadjikakou SK, Hadjiliadis N. Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord Chem Rev. 2009;253:1384–97.CrossRefGoogle Scholar
  25. 25.
    Khalaji AD, Rad SM, Grivani G. Nickel(II) and copper(II) complexes with an asymmetric bidentate Schiff-base ligand derived from furfurylamine Synthesis, spectral, XRD, and thermal studies. J Therm Anal Calorim. 2011;103:747–51.CrossRefGoogle Scholar
  26. 26.
    Avsar G, Altinel H, Yilmaz MK, Guzel B. Synthesis, characterization, and thermal decomposition of fluorinated salicylaldehyde Schiff base derivatives (salen) and their complexes with copper(II). J Therm Anal Calorim. 2010;101:199–203.CrossRefGoogle Scholar
  27. 27.
    Dolaz M, Tumer M. Synthesis, spectroscopic characterization and properties of new metal complexes. Trans Met Chem. 2004;29:516–22.CrossRefGoogle Scholar
  28. 28.
    Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley; 1986.Google Scholar
  29. 29.
    Deacon GB, Philips JR. Relationships between the carboneoxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  30. 30.
    Lever ABP. Inorganic Electronic Spectroscopy. Amsterdam, London, New York: Elsevier; 1986.Google Scholar
  31. 31.
    Gispert JB. Coordination Chemistry. Weinheim: Wiley-VCH; 2008.Google Scholar
  32. 32.
    Pethe G, Yaul A, Aswar A. Synthetic, spectroscopic and thermal studies of some complexes of unsymmetrical Schiff base ligand. J Therm Anal Calorim. 2012;107:97–103.Google Scholar
  33. 33.
    Badea M, Olar R, Marinescu D, Vasile G. Thermal behavior of some new complexes bearing ligands with polymerisable groups. J Therm Anal Calorim. 2006;85:285–8.CrossRefGoogle Scholar
  34. 34.
    Olar R, Badea M, Marinescu D, Mardale R. Thermal behaviour of new Cu(II) complexes with Schiff bases functionalised with 1,3,5-triazine moieties as potential antibacterial agents. J Therm Anal Calorim. 2011;105:553–7.CrossRefGoogle Scholar
  35. 35.
    Olar R, Badea M, Cristurean E, Parnau C, Marinescu D. Thermal behaviour of new N,N-dimethylbiguanide complexes having selective and effective antibacterial activity. J Therm Anal Calorim. 2006;84:53–8.CrossRefGoogle Scholar
  36. 36.
    Oldham C. Carboxylates, squarates and related species. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. Oxford: Pergamon Press; 1986. p. 435–56.Google Scholar
  37. 37.
    Rotaru A, Constantinescu C, Mândruleanu A, Rotaru P, Moldovan A, Győryová K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta. 2010;498:81–91.CrossRefGoogle Scholar
  38. 38.
    Tătucu M, Rotaru P, Rău I, Spînu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.CrossRefGoogle Scholar
  39. 39.
    Badea M, Olar R, Marinescu D, Uivarosi V, Aldea V, Nicolescu TO. Thermal stability of new vanadyl complexes with flavonoid derivatives as potential insulin-mimetic agents. J Therm Anal Calorim. 2010;99:823–7.CrossRefGoogle Scholar
  40. 40.
    Badea M, Olar R, Uivarosi V, Marinescu D, Aldea V, Barbuceanu SF, Nitulescu GM. Thermal behavior of some vanadyl complexes with flavone derivatives as potential insulin-mimetic agents. J Therm Anal Calorim. 2011;105:559–64.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ionela Alan
    • 1
  • Angela Kriza
    • 1
  • Mihaela Badea
    • 1
  • Nicolae Stanica
    • 2
  • Rodica Olar
    • 1
  1. 1.Faculty of Chemistry, Department of Inorganic ChemistryUniversity of BucharestBucharestRomania
  2. 2.Romanian Academy, “Ilie Murgulescu” Physical Chemistry InstituteBucharestRomania

Personalised recommendations