Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 273–277 | Cite as

Red phosphors in MgAl2Si2O8 doping with Mn4+, Gd3+ and Lu3+ and host-sensitized luminescence properties



Mn4+ doped and Gd3+, Lu3+ co-doped MgAl2Si2O8-based phosphors were first of all synthesized by solid state reaction at about 1300.0 °C. They were characterized by thermogravimetry, differential thermal analysis, X-ray powder diffraction, photoluminescence, and scanning electron microscopy. The luminescence mechanism of the phosphors which showed broad red emission bands in the range of 610–715 nm and had a different maximum intensity when activated by UV illumination was discussed. Such a red emission can be attributed to the intrinsic 2E → 4A2 transitions of Mn4+.


Luminescence Mn4+ Gd3+ Lu3+ MgAl2Si2O8 phosphors Aluminosilicates 



This study was supported by Erciyes University EUBAP under project number FBD-09-804.


  1. 1.
    Lin Y, Tang Z, Zhang Z, Nan C. Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R = Ca, Sr, Ba) phosphors. J Alloys Compd. 2003;348:76–9.CrossRefGoogle Scholar
  2. 2.
    Wang Y, Wang Z, Zhang P, Hong Z, Fan X, Qian G. Preparation of Eu2+ and Dy3+ co-activated CaAl2Si2O8-based phosphor and its optical properties. Mater Lett. 2004;5:3308–11.CrossRefGoogle Scholar
  3. 3.
    Łyszczek R. Hydrothermal synthesis, thermal and luminescent investigations of lanthanide(III) coordination polymers based on the 4,4′-oxybis(benzoate) ligand. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1987-6.Google Scholar
  4. 4.
    Blasse G, Wanmaker WL, ter Vrugt JW, Bril A. Philips Res Rep. 1968;23:189.Google Scholar
  5. 5.
    Barry TL. Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8, and Ca3MgSi2O8. J Electrochem Soc. 1968;115:733–8.CrossRefGoogle Scholar
  6. 6.
    Barry TL. Fluorescence of Eu2+-activated phases in binary alkaline earth orthosilicate systems. J Electrochem Soc. 1968;115:1181–4.CrossRefGoogle Scholar
  7. 7.
    Moore PB, Araki T. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest. Am Miner. 1972;57:1355–74.Google Scholar
  8. 8.
    Yamazaki K, Nakabayashi H, Kotera Y, Ueno A. Fluorescence of Eu2+-activated binary alkaline earth silicate. J Electrochem Soc. 1986;133:657–60.CrossRefGoogle Scholar
  9. 9.
    Poort SHM, Reijnhoudt HM, Blasse G. Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row. J Alloys Compd. 1996;241:75–81.CrossRefGoogle Scholar
  10. 10.
    Huang L, Zhang X, Liu X. Studies on luminescence properties and crystallographic sites of Ce3+ in Ca3MgSi2O8. J. Alloys Compd. 2000;305:14–6.CrossRefGoogle Scholar
  11. 11.
    Ye S, Liu Z, Wang X, Wang J, Wang L, Jing J. Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M = Sr, Ba). J Lumin. 2009;129:50–4.CrossRefGoogle Scholar
  12. 12.
    Clabau F, Garcia A, Bonville P, Ganbeau D, Mercier T, Deniard P, et al. Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+ (M = Ca, Sr, Ba) compounds. J Solid State Chem. 2008;181:1456–61.CrossRefGoogle Scholar
  13. 13.
    Ding Y, Zhang Y, Wang Z, Li W, Mao D, Han H. Photoluminescence of Eu single doped and Eu/Dy codoped Sr2Al2SiO7 phosphors with long persistence. J Lumin. 2009;129:294–9.CrossRefGoogle Scholar
  14. 14.
    Çırçır E, Ozpozan Kalaycioglu N. Host-sensitized phosphorescence of Mn4+, Eu3+ and Yb3+ in MgAl2Si2O8. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-2118-0.
  15. 15.
    Murataa T, Tanoueb T, Iwasakib M, Morinagaa K, Hasec T. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red emitting phosphor for white LED. J Lumin. 2005;114:207–12.Google Scholar
  16. 16.
    Zorenko Y, et al. Luminescence of Mn2+ ions in Tb3Al5O12. J Lumin. 2009;130:380–6.CrossRefGoogle Scholar
  17. 17.
    Donegan F, Glynn TJ, Imbusch GF, Remeika JP. Luminescence and fluorescence line narrowing studies of Y3Al5O12:Mn4+. J Lumin. 1986;36:93–100.CrossRefGoogle Scholar
  18. 18.
    Noginov MA, Loutts GB. Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3. J Opt Soc Am. 1999;16:475–83.Google Scholar
  19. 19.
    Ozpozan Kalaycioglu N, Çırçır E. Synthesis and phosphorescence properties of Mn4+, La3+ and Ho3+ in MgAl2Si2O8. J Alloys Compd. 2012;510:6–10.CrossRefGoogle Scholar
  20. 20.
    Shen WY, Pan ML, Lin J, Fang J. Host- Sensitized Luminescence of Dy3+ in Nanocrystalline β-Ga2O3 Prepared by a Pechini-Type Sol-Gel Process. J Electrochem Soc. 2005;152:2–H25.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceErciyes UniversityKayseriTurkey
  2. 2.Department of Materials Science and Engineering, Faculty of EngineeringKaramanoğlu Mehmetbey UniversityKaramanTurkey

Personalised recommendations