Skip to main content
Log in

The thermodynamics study on the dissolution mechanism of cellobiose in NaOH/urea aqueous solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

NaOH/urea aqueous solution is a novel, green solvent for cellulose. To explain why cellulose just be dissolved in this solvent under −13 °C, we studied and discussed the dissolving process of cellobiose in water, urea solution, NaOH solution and NaOH/urea aqueous solution. Dissolving cellobiose in water and the urea solution absorb heat, which is an entropy-driven process. Dissolving cellobiose in NaOH solution and mixed NaOH/urea solution is exothermic, which is an enthalpy-driven process. OH plays an important role in the dissolving process by forming a hydrogen-bonding complex. From the thermodynamic point of view, negative entropy can well interpret why cellulose must be dissolved in cold NaOH/urea aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules. 2008;41:9345–51.

    Article  CAS  Google Scholar 

  2. Cai J, Zhang L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules. 2006;7:183–9.

    Article  CAS  Google Scholar 

  3. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater. 2007;19:821–5.

    Article  CAS  Google Scholar 

  4. Qi H, Chang C, Zhang L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem. 2009;11:177–84.

    Article  CAS  Google Scholar 

  5. Luo X, Liu S, Zhou J, Zhang L. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. J Mater Chem. 2009;19:3538–45.

    Article  CAS  Google Scholar 

  6. Chang C, Peng J, Zhang L, Pang D. Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem. 2009;19:7771–6.

    Article  CAS  Google Scholar 

  7. Liu S, Zhang L, Zhou J, Xiang J, Sun J, Guan J. Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem Mater. 2008;20:3623–8.

    Article  CAS  Google Scholar 

  8. Botti A, Bruni F, Imberti S, Ricci MA, Soper AK. Ions in water: the microscopic structure of concentrated NaOH solutions. J Chem Phys. 2004;120:10154–62.

    Article  CAS  Google Scholar 

  9. Botti A, Bruni F, Imberti S, Ricci MA, Soper AK. Solvation shell of OH ions in water. J Mol Liq. 2005;117:81–4.

    Article  CAS  Google Scholar 

  10. Woutersen S, Emmerichs U, Bakker HJ. Femtosecond Mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science. 1997;278:658–60.

    Article  CAS  Google Scholar 

  11. Bakker HJ, Nienhuys HK. Delocalization of protons in liquid water. Science. 2002;297:587–90.

    Article  CAS  Google Scholar 

  12. Nienhuys HK, Lock AJ, Santen RA, Bakker HJ. Dynamics of water molecules in an alkaline environment. J Chem Phys. 2002;117:8021–9.

    Article  CAS  Google Scholar 

  13. Omta AW, Kropman MF, Woutersen S, Bakker HJ. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science. 2003;301:347–9.

    Article  CAS  Google Scholar 

  14. Chen B, Ivanov I, Park JM, Parrinello M, Klein ML. Solvation structure and mobility mechanism of OH: a Car–Parrinello molecular dynamics investigation of alkaline solutions. J Phys Chem B. 2002;106:12006–16.

    Article  CAS  Google Scholar 

  15. Chen B, Park JM, Ivanov I, Tabacchi G, Klein ML, Parrinello M. First-principles study of aqueous hydroxide solutions. J Am Chem Soc. 2002;124:8534–5.

    Article  CAS  Google Scholar 

  16. Tuckerman ME, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature. 2002;417:925–9.

    Article  CAS  Google Scholar 

  17. Ludwig R. New insight into the transport mechanism of hydrated hydroxide ions in water. Angew Chem Int Ed. 2003;42:258–60.

    Article  CAS  Google Scholar 

  18. Ludwig R. Water: from clusters to the bulk. Angew Chem Int Ed. 2001;40:1808–27.

    Article  CAS  Google Scholar 

  19. Frank HS, Franks F. Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J Chem Phys. 1968;48:4746.

    Article  CAS  Google Scholar 

  20. Wetlaufer DB, Malik SK, Stoller L, Coffin RI. Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies. J Am Chem Soc. 1964;86:508–14.

    Article  CAS  Google Scholar 

  21. Finer EG, Franks F, Tait MJ. Nuclear magnetic resonance studies of aqueous urea solutions. J Am Chem Soc. 1972;94:4424–9.

    Article  CAS  Google Scholar 

  22. Adams R, Balyuzi HHM, Burge RE. X-ray diffraction studies of aqueous solutions of urea. Appl Crystallogr. 1977;10:256–8.

    Article  Google Scholar 

  23. Hoccart X, Turrel G. Raman spectroscopic investigation of the dynamics of urea–water complexes. J Chem Phys. 1993;99:8498–503.

    Article  CAS  Google Scholar 

  24. Keuleers R, Rousseau B, Alsenoy CV, Desseyn HO. Vibrational analysis of urea. J Phys Chem A. 1999;103:4621–30.

    Article  CAS  Google Scholar 

  25. Kresheck GC, Scheraga HA. The temperature dependence of the enthalpy of formation of the amide hydrogen bond: the urea model. J Phys Chem. 1965;69:1704–6.

    Article  CAS  Google Scholar 

  26. Stokes RH. Thermodynamics of aqueous urea solutions. Aust J Chem. 1967;20:2087–100.

    Article  CAS  Google Scholar 

  27. Kuharski RA, Rossky PJ. Molecular dynamics study of solvation in urea water solution. J Am Chem Soc. 1984;106:5786–93.

    Article  CAS  Google Scholar 

  28. Kuharski RA, Rossky PJ. Solvation of hydrophobic species in aqueous urea solution: a molecular dynamics study. J Am Chem Soc. 1984;106:5794–800.

    Article  CAS  Google Scholar 

  29. Jakli G, van Hook WA. Isotope effects in aqueous systems. 12. Thermodynamics of urea-h4/water and urea-d4/water-d2 solutions. J Phys Chem. 1981;85:3480–93.

    Article  CAS  Google Scholar 

  30. Lee C, Stahlberg EA, Fitzgerald G. Chemical structure of urea in water. J Phys Chem. 1995;99:17737–41.

    Article  CAS  Google Scholar 

  31. Cai J. Dissolution of cellulose in alkali hydroxide/urea aqueous systems, structure and properties of new materials based on them. Doctor degree thesis, Wuhan University. 2006.

  32. Piekarski H, Nowicka B. Calorimetric studies of interactions of some peptides with electrolytes, urea and ethanol in water at 298.15 K. J Therm Anal Cal. 2010;102:31–6.

    Article  CAS  Google Scholar 

  33. Cooper A. Microcalorimetry of heat capacity and volumetric changes in biomolecular interactions—The link to solvation? J Therm Anal Cal. 2011;104:69–73.

    Article  CAS  Google Scholar 

  34. Wang CX, Song ZH, Xiong WG, Qu SS. Development of an isoperibol reaction calorimeter. Acta Phys Chim Sinica. 1991;7:586–8.

    CAS  Google Scholar 

  35. Cox JD. Recommended reference materials for the realization of physicochemical properties. Pure Appl Chem. 1974;40:399.

    Google Scholar 

  36. Roy C, Budtova T, Navard P, Bedue O. Structure of cellulose-soda solutions at low temperatures. Biomacromolecules. 2001;2:687–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (973 Program, 2010CB732203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Chen, Y., Jiang, X. et al. The thermodynamics study on the dissolution mechanism of cellobiose in NaOH/urea aqueous solution. J Therm Anal Calorim 111, 891–896 (2013). https://doi.org/10.1007/s10973-012-2217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2217-6

Keywords

Navigation