Skip to main content
Log in

Thermal analysis of corrosion products formed on carbon steel in ammonium chloride solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of different ions NO3 and SO4 2− on the carbon steel corrosion in ammonium chloride was investigated using mass loss measurements and potentiodynamic polarization. Corrosion products were analyzed using X-ray photoelectron spectroscopy (XPS) and simultaneous thermal and differential scanning calorimetry (TG/DSC). XPS analysis shows that the main product of corrosion is a non-stoichiometric Fe3+ oxyhydroxide, consisting of a mixture of FeO(OH) and FeO(OH) containing inclusions of these anions, species such as Fe3+O(OH,Cl); Fe3+O(OH,SO4 2−); and Fe3+O(OH,NO3 ). TG/DSC confirms the decomposition of the rusty products formed by chemical corrosion, compounds like Fe3+ oxyhydroxides, with β-FeOOH as the major phase, crystal structure of which may contain Cl, NO3 , and SO4 2−—e.g., akaganeite [Fe3+O(OH,A)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balek V, Subrt J. Thermal behaviour of iron(III) oxide hydroxides. Pure Appl Chem. 1995;67:1839–42.

    Article  CAS  Google Scholar 

  2. Samide A, Bibicu I, Rogalski M, Preda M. Surface study of the corrosion of carbon steel in solutions of ammonium salts using Mossbauer spectrometry. J Radioanal Nucl Chem. 2004;261:593–9.

    Article  CAS  Google Scholar 

  3. Refait P, Abdelmoula M, Génin JMR, Sabot R. Green rusts in electrochemical and microbially influenced corrosion of steel. Compt Rend Geosci. 2006;338:476–87.

    Article  CAS  Google Scholar 

  4. Santana Rodríguez JJ, Santana Hernández FJ, González González JE. XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corros Sci. 2002;44:2425–38.

    Article  Google Scholar 

  5. Santana Rodríguez JJ, Santana Hernández FJ, González González JE. Mathematical and electro-chemical characterisation of the layer of corrosion products on carbon steel in various environments. Corros Sci. 2002;44:2597–610.

    Article  Google Scholar 

  6. Zhang Q, Wang R, Kato M, Nakasa K. Observation by atomic force microscope of corrosion product during pitting corrosion on SUS304 stainless steel. Script Mater. 2005;52:227–30.

    Article  CAS  Google Scholar 

  7. Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel. Corros Sci. 2008;50:1872–83.

    Article  CAS  Google Scholar 

  8. Wang Z, Moore RC, Felmy AR, Mason MJ, Kukkadapu RK. A study of the corrosion products of mild steel in high ionic strength. Waste Manage. 2001;50:1872–83.

    Google Scholar 

  9. Przepiera K, Przepiera A. Kinetics of thermal transformations of pricipitated magnetite and goethite. J Therm Anal Calorim. 2001;65:497–503.

    Article  CAS  Google Scholar 

  10. Dinesen AR, Pedersen CT, Bender Koch C. The thermal conversion of lepidocrocite (γ-FeOOH) revised. J Therm Anal Calorim. 2001;64:1303–10.

    Article  CAS  Google Scholar 

  11. Ichiyanagi Y, Kimishima Y. Structural, magnetic and thermal characterizations of Fe2O3 nanoparticle systems. J Therm Anal Calorim. 2002;69:919–23.

    Article  CAS  Google Scholar 

  12. Samide A, Preda M, Chirita P, Rusu O. The effect of the CO3 2− anion on the corrosion of carbon steel in an ammonium chloride solution. Rev Chim. 2004;55:1022–9.

    CAS  Google Scholar 

  13. Refaey SAM. Inhibition of steel pitting corrosion in HCl by some inorganic anions. Appl Surf Sci. 2005;240:396–404.

    Article  CAS  Google Scholar 

  14. Abd El Haleem SM, Abd El Wanees S, Abd El Aal EE, Diab A. Environmental factors affecting the corrosion behavior of reinforcing steel. IV. Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions. Corros Sci. 2010;52:1675–83.

    Article  CAS  Google Scholar 

  15. Refaey SAM, Taha F, Abd El-Malak AM. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl and Br anions. Appl Surf Sci. 2005;242:114–20.

    Article  CAS  Google Scholar 

  16. Takasaki S, Yamada Y. Effects of temperature and aggressive anions on corrosion of carbon steel in potable water. Corros Sci. 2007;49:240–7.

    Article  CAS  Google Scholar 

  17. Vijayan CP, Le HH, Galibois A, Ghali E. Influence of some anions on the stress corrosion of low alloy steels in aqueous solutions. Surf Coat Technol. 1988;34:561–72.

    Article  CAS  Google Scholar 

  18. Deyab MA, Abd El-Rehim SS. Inhibitory effect of tungstate, molybdate and nitrite ions on the carbon steel pitting corrosion in alkaline formation water containing Cl ion. Electrochim Acta. 2007;53:1754–60.

    Article  CAS  Google Scholar 

  19. El-Naggar MM. Effects of Cl, NO3 and SO4 2− anions on the anodic behavior of carbon steel in deaerated 0.5 M NaHCO3 solutions. Appl Surf Sci. 2006;252:6179–94.

    Article  CAS  Google Scholar 

  20. Zhao JM, Zuo Y. The effects of molybdate and dichromate anions on pit propagation of mild steel in bicarbonate solution containing Cl. Corros Sci. 2002;44:2119–30.

    Article  CAS  Google Scholar 

  21. Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros Sci. 2009;51:997–1006.

    Article  CAS  Google Scholar 

  22. Deyab MA. Effect of cationic surfactant and inorganic anions on the electrochemical behavior of carbon steel in formation water. Corros Sci. 2007;49:2315–28.

    Article  CAS  Google Scholar 

  23. Tang J, Shao Y, Zhang T, Meng G, Wang F. Corrosion behaviour of carbon steel in different concentrations of HCl solutions containing H2S at 90 °C. Corros Sci. 2011;53:1715–23.

    Article  CAS  Google Scholar 

  24. Refaey SAM, Abd El-Rehim SS, Taha F, Saleh MB, Ahmed RA. Inhibition of chloride localized corrosion of mild steel by PO4 3−, CrO4 2−, MoO4 2−, and NO2 anions. Appl Surf Sci. 2000;158:190–6.

    Article  CAS  Google Scholar 

  25. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal. 2004;36:1564–74.

    Article  CAS  Google Scholar 

  26. Dupin JC, Gonbeau D, Vinatier P, Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys. 2000;2:1319–24.

    Article  CAS  Google Scholar 

  27. Yi ZA, Xu YY, Zhu LP, Dong HB, Zhu BK. Hydrophilic modification of peask porous membranes via aqueous surface-initiated atom transfer radical polymerization. Chinese J Polym Sci. 2009;27:695–702.

    Article  CAS  Google Scholar 

  28. Vinnichenko M, Chevolleau T, Pham MT, Poperenko L, Maitz MF. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. Appl Surf Sci. 2002;201:41–50.

    Article  CAS  Google Scholar 

  29. Shah Singh S, Kodama H. Effect of the presence of aluminum ions in iron solutions on the formation of iron oxyhydroxides (FeOOH) at room temperature under acidic environment. Clay Clay Miner. 1994;42:606–13.

    Article  Google Scholar 

  30. Gialanella S, Girardi F, Ischia G, Lonardelli I, Mattarelli M, Montagna M. On the goethite to hematite phase transformation. J Therm Anal Calorim. 2010;102:867–73.

    Article  CAS  Google Scholar 

  31. Walter D, Buxbaum G, Laqua W. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63:733–48.

    Article  CAS  Google Scholar 

  32. Petkova V, Pelovski Y. Comparative DSC study on thermal decomposition of iron sulphates. J Therm Anal Calorim. 2008;93:847–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by CNCSIS—UEFISCSU, under project number PNII—IDEI 422/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Samide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutunaru, B., Samide, A. & Negrila, C. Thermal analysis of corrosion products formed on carbon steel in ammonium chloride solution. J Therm Anal Calorim 111, 1149–1154 (2013). https://doi.org/10.1007/s10973-011-2187-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2187-0

Keywords

Navigation