Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 1, pp 27–35 | Cite as

Contact and non-contact photothermal calorimetry for investigation of condensed matter

Trends and recent developments


This article is a review of new possibilities offered by two photothermal (PT) methods, a contact (photopyroelectric (PPE) calorimetry) and a non-contact one (photothermal radiometry (PTR)) for accurate measurements of dynamic thermal parameters (thermal diffusivity and effusivity) of condensed matter samples. Among a large variety of detection configurations, we selected in the article a recent proposed one, allowing for coupled PPE–PTR experiments. The detection cell of such a configuration is composed by a directly irradiated pyroelectric sensor, a liquid layer (coupling fluid) and a solid/liquid backing material. The measurements are based on the thickness scanning procedure of the coupling fluid (TWRC technique). Some recent applications concerning measurements of thermal diffusivity and effusivity of some liquids and solids (thin layers or bulk materials) together with a study of the accuracy of the investigations are described.


PPE calorimetry PTR calorimetry Thermal parameters TWRC method Condensed matter 



This study was supported in part by the Romanian Ministry of Education and Research Youth and Sport, through the National Research Program, PN-II-ID-PCE-2011-3-0036.


  1. 1.
    Hess P, Pelzl J, editors. Photoacoustic and photothermal phenomena, Springer Ser. Opt. Sci. Vol. 58. Berlin Heidelberg: Springer; 1988.Google Scholar
  2. 2.
    Murphy J, Maclachlan-Spicer JW, Aamodt LC, Royce BSH, editors. Photoacoustic and photothermal phenomena II, Springer Ser. Opt. Sci. Vol. 58. Berlin Heidelberg: Springer; 1988.Google Scholar
  3. 3.
    Mandelis A. Principles and perspectives of photothermal and photoacoustic phenomena. New York: Elsevier; 1992.Google Scholar
  4. 4.
    Tam AC. Applications of photoacoustic sensing techniques. Rev Mod Phys. 1986;58:381–431.CrossRefGoogle Scholar
  5. 5.
    Bicanic D, editor. Photoacoustic and photothermal phenomena III, Springer Ser. Opt. Sci. Vol. 58. Berlin Heidelberg: Springer; 1991.Google Scholar
  6. 6.
    Dadarlat D, Streza M, Pop MN, Tosa V, Delenclos S, Longuemart S, Sahraoui AH. Photopyroelectric calorimetry of solids. FPPE–TWRC method. J Therm Anal Calorim. 2010;101:397–402.CrossRefGoogle Scholar
  7. 7.
    Dadarlat D, Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE–PTR calorimetry involving TWRC technique. Theory and mathematical simulations. Int J Thermophys. 2010;31:2275–83.CrossRefGoogle Scholar
  8. 8.
    Mandelis A, Matvienko A. Photopyroelectric thermal-wave cavity devices-10 years later. In: Denis Remiens, editor. Pyroelectric materials and sensors. Trivandrum: Research Signpost; 2007. p. 61–96.Google Scholar
  9. 9.
    Mandelis A. Diffusion-Wave Fields: Mathematical Methods and Green Functions. New York: Springer; 2006.Google Scholar
  10. 10.
    Streza M, Pop MN, Kovacs K, Simon V, Longuemart S, Dadarlat D. Thermal effusivity investigations of solid materials by using the thermal-wave-resonator-cavity (TWRC) configuration. Theory and mathematical simulations. Laser Phys. 2000;19:1340–4.CrossRefGoogle Scholar
  11. 11.
    Dadarlat D. Photopyroelectric calorimetry of liquids. Recent development and applications. Laser Phys. 2009;19:1330–40.CrossRefGoogle Scholar
  12. 12.
    Santos R, Miranda LCM. Theory of the photothermal radiometry with solids. J Appl Phys. 1981;52:4194–8.CrossRefGoogle Scholar
  13. 13.
    Delenclos S, Dadarlat D, Houriez N, Longuemart S, Kolinsky C, Hadj Sahraoui A. On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum. 2007;78:024902.CrossRefGoogle Scholar
  14. 14.
    Dadarlat D, Neamtu C, Pop R, Marinelli M, Mercuri F. On the selection of the experimental parameters in a thermal-wave-resonator-cavity (TWRC) configuration. J Optoelectron Adv Mat. 2007;9:2847–52.Google Scholar
  15. 15.
    Shen J, Mandelis A. Thermal-wave resonator cavity. Rev Sci Instrum. 1995;66:4999–5005.CrossRefGoogle Scholar
  16. 16.
    Balderas-Lopez LA, Mandelis A, Garcia JA. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum. 2000;71:2933–7.CrossRefGoogle Scholar
  17. 17.
    Dadarlat D, Neamtu C. High performance photopyroelectric calorimetry of liquids. Acta Chim Slov. 2009;56:225–36.Google Scholar
  18. 18.
    Dadarlat D, Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE–PTR calorimetry involving TWRC technique II. Experimental: application to thermal effusivity measurements of solids. Int J Thermophysics. 2011. doi  10.1007/s10765-011-1067-y.
  19. 19.
    Pittois S, Chirtoc M, Glorieux C, Bril W, Van den Thoen J. Direct determination of thermal conductivity of solids and liquids at very low frequencies using the photopyroelectric method. Anal Sci. 2001;17:S110–3.Google Scholar
  20. 20.
    Menon PC, Rajesh RN, Glorieux C. High accuracy self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids. Rev Sci Instrum. 2009;80:054904.Google Scholar
  21. 21.
    Streza M, Dadarlat D, Simon V, Prejmerean C, Silaghi-Dumitrescu L. Thermal diffusivity investigations of some dental materials by using photopyroelectric calorimetry. J Optoelectron Adv Mat Symposia. 2009;1:70–3.Google Scholar
  22. 22.
    Dadarlat D, Neamtu C. Detection of molecular associations in liquids by photopyroelectric measurements of thermal effusivity. Meas Sci Technol. 2006;17:3250–4.CrossRefGoogle Scholar
  23. 23.
    Pop MN, Dadarlat D, Streza M, Tosa V. Photopyroelectric investigation of thermal effusivity of binary liquid mixtures by FPPE–TWRC method. Acta Chim Slov. 2011;58:549–54.Google Scholar
  24. 24.
    Dadarlat D, Pop MN. New FPPE–TWRC methodology for measuring the thermal parameters of thin solids. Meas Sci Technol. 2010;21:105701–5.CrossRefGoogle Scholar
  25. 25.
    Bailey RA. Materials properties database (JAHM software).1999.Google Scholar
  26. 26.
    Dadarlat D, Pop MN. Self-consistent calorimetry of Liquids. Int J Therm Sci. 2011. Submitted.Google Scholar
  27. 27.
    Huang L, Liu LS. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J Food Eng. 2009;95:179–85.CrossRefGoogle Scholar
  28. 28.
    Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. 4th ed. New York: John Wiley & Sons; 1996.Google Scholar
  29. 29.
    Marin E. Thermal wave physics: principles and applications to the characterization of liquids. Rev Ciencias Exatas Naturais. 2004;6:145–69.Google Scholar
  30. 30.
    Touloukian YS, editor. Thermophysical properties of matter. The thermophysical properties data center data series. New York: IFI Plenum Press; 1970.Google Scholar
  31. 31.
    Touloukian YS, editor. Thermophysical Properties of High Temperatures Solid Materials. New York: MacMillan; 1967.Google Scholar
  32. 32.
    Perry JH. Chemical Engineering Handbook. New York: McGraw-Hill; 1963.Google Scholar
  33. 33.
    Pop MN, Dadarlat D. Photopyroelectric measurement of thermal effusivity of volatile liquids. Thermal wave resonator cavity method. J Optoelectron Adv Mat. 2011. Submitted.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.National R&D Institute for Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations