Skip to main content
Log in

Contact and non-contact photothermal calorimetry for investigation of condensed matter

Trends and recent developments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article is a review of new possibilities offered by two photothermal (PT) methods, a contact (photopyroelectric (PPE) calorimetry) and a non-contact one (photothermal radiometry (PTR)) for accurate measurements of dynamic thermal parameters (thermal diffusivity and effusivity) of condensed matter samples. Among a large variety of detection configurations, we selected in the article a recent proposed one, allowing for coupled PPE–PTR experiments. The detection cell of such a configuration is composed by a directly irradiated pyroelectric sensor, a liquid layer (coupling fluid) and a solid/liquid backing material. The measurements are based on the thickness scanning procedure of the coupling fluid (TWRC technique). Some recent applications concerning measurements of thermal diffusivity and effusivity of some liquids and solids (thin layers or bulk materials) together with a study of the accuracy of the investigations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hess P, Pelzl J, editors. Photoacoustic and photothermal phenomena, Springer Ser. Opt. Sci. Vol. 58. Berlin Heidelberg: Springer; 1988.

    Google Scholar 

  2. Murphy J, Maclachlan-Spicer JW, Aamodt LC, Royce BSH, editors. Photoacoustic and photothermal phenomena II, Springer Ser. Opt. Sci. Vol. 58. Berlin Heidelberg: Springer; 1988.

    Google Scholar 

  3. Mandelis A. Principles and perspectives of photothermal and photoacoustic phenomena. New York: Elsevier; 1992.

    Google Scholar 

  4. Tam AC. Applications of photoacoustic sensing techniques. Rev Mod Phys. 1986;58:381–431.

    Article  CAS  Google Scholar 

  5. Bicanic D, editor. Photoacoustic and photothermal phenomena III, Springer Ser. Opt. Sci. Vol. 58. Berlin Heidelberg: Springer; 1991.

    Google Scholar 

  6. Dadarlat D, Streza M, Pop MN, Tosa V, Delenclos S, Longuemart S, Sahraoui AH. Photopyroelectric calorimetry of solids. FPPE–TWRC method. J Therm Anal Calorim. 2010;101:397–402.

    Article  CAS  Google Scholar 

  7. Dadarlat D, Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE–PTR calorimetry involving TWRC technique. Theory and mathematical simulations. Int J Thermophys. 2010;31:2275–83.

    Article  CAS  Google Scholar 

  8. Mandelis A, Matvienko A. Photopyroelectric thermal-wave cavity devices-10 years later. In: Denis Remiens, editor. Pyroelectric materials and sensors. Trivandrum: Research Signpost; 2007. p. 61–96.

  9. Mandelis A. Diffusion-Wave Fields: Mathematical Methods and Green Functions. New York: Springer; 2006.

    Google Scholar 

  10. Streza M, Pop MN, Kovacs K, Simon V, Longuemart S, Dadarlat D. Thermal effusivity investigations of solid materials by using the thermal-wave-resonator-cavity (TWRC) configuration. Theory and mathematical simulations. Laser Phys. 2000;19:1340–4.

    Article  Google Scholar 

  11. Dadarlat D. Photopyroelectric calorimetry of liquids. Recent development and applications. Laser Phys. 2009;19:1330–40.

    Article  CAS  Google Scholar 

  12. Santos R, Miranda LCM. Theory of the photothermal radiometry with solids. J Appl Phys. 1981;52:4194–8.

    Article  CAS  Google Scholar 

  13. Delenclos S, Dadarlat D, Houriez N, Longuemart S, Kolinsky C, Hadj Sahraoui A. On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum. 2007;78:024902.

    Article  CAS  Google Scholar 

  14. Dadarlat D, Neamtu C, Pop R, Marinelli M, Mercuri F. On the selection of the experimental parameters in a thermal-wave-resonator-cavity (TWRC) configuration. J Optoelectron Adv Mat. 2007;9:2847–52.

    CAS  Google Scholar 

  15. Shen J, Mandelis A. Thermal-wave resonator cavity. Rev Sci Instrum. 1995;66:4999–5005.

    Article  CAS  Google Scholar 

  16. Balderas-Lopez LA, Mandelis A, Garcia JA. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum. 2000;71:2933–7.

    Article  CAS  Google Scholar 

  17. Dadarlat D, Neamtu C. High performance photopyroelectric calorimetry of liquids. Acta Chim Slov. 2009;56:225–36.

    CAS  Google Scholar 

  18. Dadarlat D, Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE–PTR calorimetry involving TWRC technique II. Experimental: application to thermal effusivity measurements of solids. Int J Thermophysics. 2011. doi 10.1007/s10765-011-1067-y.

  19. Pittois S, Chirtoc M, Glorieux C, Bril W, Van den Thoen J. Direct determination of thermal conductivity of solids and liquids at very low frequencies using the photopyroelectric method. Anal Sci. 2001;17:S110–3.

    CAS  Google Scholar 

  20. Menon PC, Rajesh RN, Glorieux C. High accuracy self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids. Rev Sci Instrum. 2009;80:054904.

    Google Scholar 

  21. Streza M, Dadarlat D, Simon V, Prejmerean C, Silaghi-Dumitrescu L. Thermal diffusivity investigations of some dental materials by using photopyroelectric calorimetry. J Optoelectron Adv Mat Symposia. 2009;1:70–3.

    Google Scholar 

  22. Dadarlat D, Neamtu C. Detection of molecular associations in liquids by photopyroelectric measurements of thermal effusivity. Meas Sci Technol. 2006;17:3250–4.

    Article  CAS  Google Scholar 

  23. Pop MN, Dadarlat D, Streza M, Tosa V. Photopyroelectric investigation of thermal effusivity of binary liquid mixtures by FPPE–TWRC method. Acta Chim Slov. 2011;58:549–54.

    CAS  Google Scholar 

  24. Dadarlat D, Pop MN. New FPPE–TWRC methodology for measuring the thermal parameters of thin solids. Meas Sci Technol. 2010;21:105701–5.

    Article  Google Scholar 

  25. Bailey RA. Materials properties database (JAHM software).1999.

  26. Dadarlat D, Pop MN. Self-consistent calorimetry of Liquids. Int J Therm Sci. 2011. Submitted.

  27. Huang L, Liu LS. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J Food Eng. 2009;95:179–85.

    Article  CAS  Google Scholar 

  28. Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. 4th ed. New York: John Wiley & Sons; 1996.

    Google Scholar 

  29. Marin E. Thermal wave physics: principles and applications to the characterization of liquids. Rev Ciencias Exatas Naturais. 2004;6:145–69.

    Google Scholar 

  30. Touloukian YS, editor. Thermophysical properties of matter. The thermophysical properties data center data series. New York: IFI Plenum Press; 1970.

    Google Scholar 

  31. Touloukian YS, editor. Thermophysical Properties of High Temperatures Solid Materials. New York: MacMillan; 1967.

    Google Scholar 

  32. Perry JH. Chemical Engineering Handbook. New York: McGraw-Hill; 1963.

    Google Scholar 

  33. Pop MN, Dadarlat D. Photopyroelectric measurement of thermal effusivity of volatile liquids. Thermal wave resonator cavity method. J Optoelectron Adv Mat. 2011. Submitted.

Download references

Acknowledgements

This study was supported in part by the Romanian Ministry of Education and Research Youth and Sport, through the National Research Program, PN-II-ID-PCE-2011-3-0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dadarlat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadarlat, D. Contact and non-contact photothermal calorimetry for investigation of condensed matter. J Therm Anal Calorim 110, 27–35 (2012). https://doi.org/10.1007/s10973-011-2180-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2180-7

Keywords

Navigation