Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 1, pp 275–280 | Cite as

Crystal growth kinetics of Sb2S3 in Ge–Sb–S amorphous thin films



Sb2S3 crystal growth kinetics in (GeS2) x (Sb2S3)1–x thin films (x = 0.4 and 0.5) have been investigated through this study by optical microscopy in the temperature range of 575–623 K. Relative complex crystalline structures composed of submicrometer-thin Sb2S3 crystal fibers develop linearly with time. The data on temperature dependence of crystal growth rate exhibit an exponential behavior. Corresponding activation energies were found to be E G = 279 ± 7 kJ mol−1 for x = 0.4 and E G = 255 ± 5 kJ mol−1 for x = 0.5. These values are similar to activation energies of crystal growth in bulk glasses of the same compositions. The crystal growth is controlled by liquid–crystal interface kinetics. It seems that the 2D surface-nucleated growth is operative in this particular case. The calculated crystal growth rate for this model is in good agreement with experimental data. The crystal growth kinetic characteristic is similar for both the bulk glass and thin film for x = 0.4 composition. However, it differs considerably for x = 0.5 composition. Thermodynamic and kinetic aspects of crystal growth are discussed in terms of Jackson’s theory of liquid–crystal interface.


Crystal growth Thin films Ge–Sb–S Optical microscopy 



The authors would like to express their gratitude for the financial support received from the Czech Science Foundation under grant no. P106/11/1152


  1. 1.
    Pan J, Xiong S, Xi B, Li J, Li J, Zhou H, Qian Y. Tartaric Acid and l–cysteine synergistic–assisted synthesis of antimony trisulfide hierarchical structures in aqueous solution. Eur J Inorg Chem. 2009:5302.Google Scholar
  2. 2.
    Ma J, Duan X, Lian J, Kim T, Peng P, Liu X, Liu Z, Li H, Zheng W. Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chem Eur J. 1010;16:13210.CrossRefGoogle Scholar
  3. 3.
    Ryšavá N, Tichý L, Barta Č, Tříska A, Tichá H. Kinetics recrystallization of Sb2S3 in glassy (GeS2)0.3(Sb2S3)0.7. Phys Status Solidi A. 1985;87:K13.CrossRefGoogle Scholar
  4. 4.
    Ryšavá N, Spasov T, Tichý L (1987) Isothermal DSC method for evaluation of the kinetics of crystallization in the Ge–Sb–S glassy system. J Therm Anal. 32: 1015.Google Scholar
  5. 5.
    Ryšavá N, Barta Č, Tichý L. On the crystallization of Sb2S3 in glassy (GeS2)0.3(Sb2S3)0.7. J Mat Sci Lett. 1989;8:91.Google Scholar
  6. 6.
    Málek J, Smrčka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta. 1991;186:153.CrossRefGoogle Scholar
  7. 7.
    Málek J, Černošková E, Švejka R, Šesták J, Van der Plaats G. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 1996;280–281:353.CrossRefGoogle Scholar
  8. 8.
    Málek J. Crystallization kinetics by thermal analysis. J Therm Anal Calorim. 1999;56:763.CrossRefGoogle Scholar
  9. 9.
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239.CrossRefGoogle Scholar
  10. 10.
    Málek J, Zmrhalová Z, Barták J, Honcová P. A novel method to study crystallization of glasses. Thermochim Acta. 2010;511:67–73.CrossRefGoogle Scholar
  11. 11.
    Málek J, Zmrhalová Z, Honcová P. Crystallization in glasses monitored by thermomechanical analysis. J Therm Anal Calorim. 2011;105:565.CrossRefGoogle Scholar
  12. 12.
    Zmrhalová Z, Málek J, Švadlák D, Barták J. The crystallization kinetics of Sb2S3 in (GeS2)0.4(Sb2S3)0.6 glass. Phys Status Solidi C. 2011;8:3127.CrossRefGoogle Scholar
  13. 13.
    Pustková P, Zmrhalová Z, Málek J. The particle size influence on crystallization kinetics of (GeS2)0.1(Sb2S3)0.9 glass. Thermochim Acta. 2007;466:13.CrossRefGoogle Scholar
  14. 14.
    Pérez–Maqueda LA, Criado JM, Málek J. Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Solids. 2003;320:84.CrossRefGoogle Scholar
  15. 15.
    Budrugeac P, Criado JM, Gotor FJ, Málek J, Pérez–Maqueda LA, Popescu C, Segal E. On the evaluation of the non–isothermal kinetic parameters of (GeS2)0.3 (Sb2S3)0.7 crystallization using IKP method. Int J Chem Kinetics. 2004;36:209.Google Scholar
  16. 16.
    Málek J, Švadlák D, Mitsuhashi T, Haneda H. Kinetics of crystal growth of Sb2S3 in (GeS2)0.3(Sb2S3)0.7 glass. J Non-Cryst Solids. 2006;352:2243–2253.Google Scholar
  17. 17.
    Švadlák D, Pustková P, Košťál P, Málek J. Crystal growth kinetics in (GeS2)0.2(Sb2S3)0.8 glass. Thermochim Acta. 2006;446:121.CrossRefGoogle Scholar
  18. 18.
    Švadlák D, Zmrhalová Z, Pustková P, Málek J, Pérez–Maqueda LA, Criado JM. Crystallization behavior of (GeS2)0.1(Sb2S3)0.9 glass. J Non-Cryst Solids. 2008;354:3354.CrossRefGoogle Scholar
  19. 19.
    Švadlák D. Crystallization kinetics in amorphous systems. Ph.D. Thesis, University of Pardubice; 2008.Google Scholar
  20. 20.
    Uhlmann DR, In: Hench LL, Freiman SW, editors. Advances in nucleation and crystallization in glasses. Columbus: American Ceramic Soc; 1972.Google Scholar
  21. 21.
    Jackson KA, Uhlmann DR, Hunt JD. On the nature of crystal growth from the melt. J Cryst Growth. 1967;1:1.CrossRefGoogle Scholar
  22. 22.
    Johnson GK, Papatheodorou GN, Johnson CE. The enthalpies of formation of SbF5(1) and Sb2S3(c) and the high-temperature thermodynamic functions of Sb2S3(c) and Sb2S3(l). J Chem Thermodyn. 1981;13:745.CrossRefGoogle Scholar
  23. 23.
    Shánělová J, Košťál P, Málek J. Viscosity of (GeS2)x(Sb2S3)1−x supercooled melts. J Non-Cryst Solids. 2006;352:3952.CrossRefGoogle Scholar
  24. 24.
    Woodruff DP. The solid-liquid interface. Cambridge: Cambridge University Press; 1973.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations