Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 677–683 | Cite as

Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite

  • Abdollah Omrani
  • Abbas Ali Rostami
  • Fatemeh Ravari


The decomposition kinetics of glycerol diglycidyl ether (GDE)/3,3-dimethylglutaric anhydride/nanoalumina composite have been investigated by thermogravimetry analysis under nonisothermal mode. The activation energy, E a, of the solid-state decomposition process was evaluated using the advanced isoconversional method. From the experimental data, the dependence of conversion on temperature and activation energy was constructed allowing calculating the master plots. Our results showed that the decomposition mechanism at temperatures below 400 °C could be fitted by R2 kinetic model with E = 143 kJ mol−1. The information about the kinetic parameters based only on thermal degradation data has been used for quick lifetime estimation at different temperatures. The Vyazovkin method was also employed to predict the times to reach α = 0.5 at isothermal mode using the activation energy calculated by the advanced isoconversional approaches. Scanning electron microscopy (SEM) analysis was carried out to investigate the fracture surface morphology. It was revealed from the SEM images that the presence of nanoalumina results in reinforcement of GDE matrix.


Polymers Thermogravimetric analysis (TG) Microstructure Lifetime 


  1. 1.
    Barral L, Cano J, Lopez J, Lopez-Bueno I, Nogueira P, Abad MJ, Ramrez C. Decomposition behavior of epoxy-resin systems cured by diamines. Eur Polym J. 2000;36:1231–40.CrossRefGoogle Scholar
  2. 2.
    Jablonski AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78–80.CrossRefGoogle Scholar
  3. 3.
    Santon AF, Polese L, Crespi MS, Ribeiro CA. Kinetic model of poly (3-hydroxybutyrate) thermal degradation from experimental non-isothermal data. J Therm Anal Calorim. 2009;96:287–91.CrossRefGoogle Scholar
  4. 4.
    Vyazovkin S, Wigh CA. Isothermal and nonisothermal reaction kinetics in solids: In search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.CrossRefGoogle Scholar
  5. 5.
    Carrasco F, Pages P. Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym Degrad Stab. 2008;93:1000–7.CrossRefGoogle Scholar
  6. 6.
    Nunez L, Fraga F, Nunez MR, Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE (n = 0)/1,2 DCH. J Appl Polym Sci. 2000;41:4635–41.Google Scholar
  7. 7.
    Nunez L, Villanueva M, Fraga-Rivas I. Activation energies for the thermodegradation process of an epoxy-diamine system. J Therm Anal Calorim. 2006;83(3):727–33.CrossRefGoogle Scholar
  8. 8.
    Friedman HL. Kinetic and gaseous products of thermal decomposition of polymers. J Macromol Sci A. 1967;1(1):57–79.CrossRefGoogle Scholar
  9. 9.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.CrossRefGoogle Scholar
  10. 10.
    Flynn JH, Wall LA, Quick A. Direct method for the determination of activation energy from thermogravimetric data. J Polym Sci. 1966;4:323–42.CrossRefGoogle Scholar
  11. 11.
    Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–1.CrossRefGoogle Scholar
  12. 12.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inform Comput Sci. 1996;36:42–5.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;2(2):178–83.CrossRefGoogle Scholar
  14. 14.
    Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388:289–98.CrossRefGoogle Scholar
  15. 15.
    Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and themo-oxidative degradation of polystyrene, poly (propylene). Macromol Chem Phys. 2001;202:775–84.CrossRefGoogle Scholar
  16. 16.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  17. 17.
    Omrania A, Rostamia AA, Ravaria F, Mashak A. Curing behavior and structure of a novel nanocomposite from glycerol diglycidyl ether and 3, 3-dimethylglutaric anhydride. Thermochim Acta. 2011;517:9–15.CrossRefGoogle Scholar
  18. 18.
    Nunez L, Fraga F, Nunez MR, Villanueva M. Lifetime prediction of the epoxy system badge n = 0/1,2 DCH by thermogravimetric analysis. J Appl Polym Sci. 2000;78:1239–44.CrossRefGoogle Scholar
  19. 19.
    Malek J. The kinetic analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  20. 20.
    Sestak J, Malek J. Diagnostic limits of phenomenological models of heterogeneous reactions and thermal analysis kinetics. Solid State Ion. 1993;63:245–54.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules. 1996;29:1867–73.CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Abdollah Omrani
    • 1
  • Abbas Ali Rostami
    • 1
  • Fatemeh Ravari
    • 1
  1. 1.Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations