Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 2, pp 695–704 | Cite as

Thermodynamic properties of inclusion complexes of α-cyclodextrin + aliphatic nitriles (H(CH2) n CN: n = 1–8) in aqueous solution

  • Takayoshi Kimura
  • Takashi Yukiyama
  • Masao Fujisawa


In order to investigate the contribution of the hydrophilic parts of guest molecules of aliphatic complexes to the inclusion reaction, the thermodynamic properties of inclusion complexes of cyclodextrin (α-CD) with aliphatic nitriles [H(CH2) n CN: n = 1–8] into the α-CD cavity in dilute aqueous solutions were measured by a micro-calorimeter at 298.15 K. The thermodynamic properties of inclusion for the octane nitrile system were different from those of others. The inclusion process of aliphatic nitriles to α-CD has two kinds of major driving force of enthalpy and entropy driven inclusion. The interaction energies of inclusion complexes of α-CD and aliphatic nitriles were determined by DFT calculation (B3LYP/6-31++G (d,p)) in water and compared with the experimental results. DFT calculations were performed on the inclusion complexes of α-CD with seven nitriles of each conformer. Both the gas phase interaction and solvent effect were taken into consideration. Also non-polar interactions between aliphatic nitriles + α-CD in aqueous solution were calculated and herein the inclusion energy is discussed.


Thermodynamic properties Molecular inclusion Aliphatic nitriles α-cyclodextrin Aqueous solutions DFT 


  1. 1.
    Takagi S, Kimura T, Maeda M. Some problems in solution calorimetry, experimental experiences by authors, and enthalpy-entropy compensation in cyclodextrin + alcohol inclusion-complex formation in aqueous solutions. Thermochim Acta. 1985;88:247–54.CrossRefGoogle Scholar
  2. 2.
    Takagi S, Fujisawa M, Kimura T. Enthalpy and entropy changes on molecular inclusion of 1,3-butanediol into α- and β-cyclodextrin cavities in aqueous solutions. Thermochim Acta. 1991;183:289–97.CrossRefGoogle Scholar
  3. 3.
    Maeda M, Takagi S. Calorimetric studies on molecular inclusion. III. Gibbs energies and entropies of inclusion of 1-propanol and 1-pentanol into cyclohexaamylose and cycloheptaamylose in aqueous solutions at 298.15 K. Netsu Sokutei. 1983;10:103–7.Google Scholar
  4. 4.
    Takagi, S, Maeda M. Enthalpy of inclusion of methanol, 1-propanol, 1-pentanol into α-cyclodextrin cavities in aqueous solutions at 298.15 K. Nippon Kagakukai Shi. 1983: 1983; 188-194.Google Scholar
  5. 5.
    Takagi S, Maeda M. Calorimetric determination of enthalpies, Gibbs energies and entropies of inclusion of some alcohols into α-and β-cyclodextrins in aqueous solutions. J Incl Phenom. 1984;2:775–80.CrossRefGoogle Scholar
  6. 6.
    Fujisawa M, Kimura T, Takagi S. Enthalpy and entropy changes on molecular inclusion of 1-butanol into α- and β-cyclodextrin cavities in aqueous solutions. Netsusokutei. 1991;18:71–6.Google Scholar
  7. 7.
    Takagi S, Fujisawa M, Kimura T. Moleclular recognition. In: Salamone JC, editor. Polymeric materials encyclopedia cyclodextrins. Boca Raton: CRC press Inc.; 1996. p. 1709–15.Google Scholar
  8. 8.
    Fujisawa M, Kimura T, Takagi S. The enthalpic stabilisation on molecular inclusion of butanediol isomers into cyclodextrin cavities. Fluid Phase Equilib. 1997;163:197–205.CrossRefGoogle Scholar
  9. 9.
    Fujisawa M, Kimura T, Takagi S. Thermodynamic functions of molecular inclusion of some isomers of butanediol in gas phase into a- and b-cyclodextrin cavities in aqueous solutions at 298.15 K. J Thermal Anal Calorim. 2001;64:149–55.CrossRefGoogle Scholar
  10. 10.
    Fujisawa M, Kimura T. Enthalpy and entropy changes on molecular inclusion of 1-heptanol into α- and β-cyclodextrin cavities in aqueous solutions. Thermochim Acta. 2004;416:51–4.CrossRefGoogle Scholar
  11. 11.
    Kimura T, Fujisawa M, Nakano Y, Kamiyama T, Otsu T, Maeda M, Takagi S. Calorimetric study on inclusion of some alcohols into α-cyclodextrin cavities; molecular mechanical calculation of hydration Gibbs energies. J Thermal Anal Calorim. 2007;90:581–5.CrossRefGoogle Scholar
  12. 12.
    Kimura T, Fujie S, Yukiyama T, Kamiyama T, Fujisawa M, Aki H. Enthalpy and entropy changes on molecular inclusion of pentane derivertives into α-cyclodextrin cavities in aqueous solutions. J. Incl. Phenom. Mcrocycl. Chem. 2011;70:269–78.CrossRefGoogle Scholar
  13. 13.
    Bastos M, Briggner L-E, Shehatta I, Wadsö I. The binding of alkane-α, ω-diols to α-cyclodextrin. A microcalorimetric study. J Chem Thermodyn. 1990;22:1181–90.CrossRefGoogle Scholar
  14. 14.
    Bastos M, Afonso M, Cacote MHM, Ramos MJ. Interactions in the model system α-cyclodextrin–glycerol Experimental and theoretical study. J Chem Soc Faraday Trans. 1997;93:2061–7.CrossRefGoogle Scholar
  15. 15.
    Bastos M, Milheiras S, Bai G. Enthalpy of solution of α-cyclodextrin in water and in formamide at 298.15 K. Thermochim Acta. 2004;420:111–7.CrossRefGoogle Scholar
  16. 16.
    Moreira R, Bastos M. The influence of glycerol on ligand binding equilibria between monoalcohols and α-cyclodextrin. J Chem Thermodyn. 2000;32:1539–50.CrossRefGoogle Scholar
  17. 17.
    Rekharsky M, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–918.CrossRefGoogle Scholar
  18. 18.
    Ross PD, Rekharsky MV. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys J. 1996;71:2144–54.CrossRefGoogle Scholar
  19. 19.
    Rekharsky MV, Schwarz FP, Tewari YB, Goldberg RN. A thermodynamic study of the reactions of cyclodextrins with primary and secondary aliphatic alcohols, with d- and l-phenylalanine, and with l-phenylalanine amide. J Phys Chem. 1994;98:10282–8.CrossRefGoogle Scholar
  20. 20.
    Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97:1325–58.CrossRefGoogle Scholar
  21. 21.
    Rekharsky MV, Inoue Y. Microcalorimetry. In: Dodziuk H, editor. Cyclodextrins and their complexes: chemistry, analytical methods, applications. Weinheim: Wiley-VCH Verlag GmbH & Co.; 2006. p. 199–230.CrossRefGoogle Scholar
  22. 22.
    Spencer JN, DeGarmo IJ, Paul IM, He Q, Ke X, Wu Z, Yoder CH, Chen S, Mihalick JE. Inclusion complexes of alcohols with α-cyciodextrin. J Solut Chem. 1995;24:601–9.CrossRefGoogle Scholar
  23. 23.
    Barone G, Castronuovo G, Del Vecchio P, Elia V, Muscetta M. Thermodynamics of formation of inclusion compounds in water. α-Cyclodextrin–alcohol adducts at 298.15 K. J Chem Soc Faraday Trans. 1986;82:2089–101.CrossRefGoogle Scholar
  24. 24.
    Kimura T, Imamura H, Shimowada A, Takagi S. Elimination processes of guest molecules from the inclusion complexes of deoxycholic acid. J Mass Spectrom Soc Jpn. 2003;51:242–6.CrossRefGoogle Scholar
  25. 25.
    Kimura T, Takagi S. Determination of excess volumes of benzene + o-terphenyl at 288.15, 298.02, and 302.78 K. J Chem Thermodyn. 1979;11:119–24.CrossRefGoogle Scholar
  26. 26.
    Kimura T, Matsushita T, Ueda K, Tamura K, Takagi S. Deuterium isotope effect on excess enthalpies of methanol or ethanol and their deuterium derivatives. J Thermal Anal Calorim. 2001;64:231–41.CrossRefGoogle Scholar
  27. 27.
    Kimura T, Ozaki T, Nakai Y, Takeda K, Takagi S. Excess enthalpies of binary mixtures of propanediamine + propanediol at 298.15 K. J Thermal Anal. 1998;54:285–96.CrossRefGoogle Scholar
  28. 28.
    Wadsö I, Goldberg RN. Pure Appl Chem. 2001;73:1625–39.CrossRefGoogle Scholar
  29. 29.
    Chacko KK, Saenger W. Topography of cyclodextrin inclusion complexes. 15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. Four- and six-membered circular hydrogen bonds. J Am Chem Soc. 1981;103:1708–15.CrossRefGoogle Scholar
  30. 30.
    Cossin M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem. 2003;24:669–81.CrossRefGoogle Scholar
  31. 31.
    Chalasinski G, Szczeniak MM. On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces. Mol Phys. 1988;63:205–24.CrossRefGoogle Scholar
  32. 32.
    Gaussian 09, revision A.02. Gaussian, Inc., Pittsburgh; 2009.Google Scholar
  33. 33.
    Fujisawa M, Maeda M, Takagi S, Kimura T. Enthalpies of dilution of mono-, di- and polyalcohols in dilute aqueous solutions at 298.15 K. J Therm Anal Calorim. 2002;69:841–8.CrossRefGoogle Scholar
  34. 34.
    Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem. 2006;27:1787–99.CrossRefGoogle Scholar
  35. 35.
    Hamprecht FA, Cohen A, Tozer DJ, Handy NC. Development and assessment of new exchange-correlation functionals. J Chem Phys. 1998;109:6264–71.CrossRefGoogle Scholar
  36. 36.
    Morikawa T, Brian T. Newbold, analogous odd-even parities. Math Chem. 2003;12:445–50.Google Scholar
  37. 37.
    Nooner DW, Oró J. Organic complexes in meteorites—I. Aliphatic hydrocarbons. Geochim Cosmochim Acta. 1967;31:1359–94.CrossRefGoogle Scholar
  38. 38.
    Cingolani A, Berchiesi G. Thermodynamic properties of organic complexs. J Thermal Anal Calorim. 1974;6:87–91.CrossRefGoogle Scholar
  39. 39.
    Acree WE. Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation. Thermochim Acta. 1991;189:37–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Takayoshi Kimura
    • 1
  • Takashi Yukiyama
    • 1
  • Masao Fujisawa
    • 1
  1. 1.Department of ChemistryKinki UniversityHigashi-OsakaJapan

Personalised recommendations