Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 3, pp 1353–1365 | Cite as

Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry

  • Pieter Samyn
  • Gustaaf Schoukens
  • Leo Vonck
  • Dirk Stanssens
  • Henk Van den Abbeele


Vegetable oils are increasingly replacing fossil-oil-based polymers, and therefore aimed at being used in polymerization reactions from −20 to 100 °C. Therefore, phase transitions and heat capacities in this temperature range should be well characterized to optimize processing conditions and energy inputs. By using the DSC analysis, only small primary correspondence or divergence between different oil types are seen as a function of their degree of unsaturation, but it does not clearly distinguish detailed features such as shoulder bands related to the separate melting processes of single fatty acid components. By using modulated DSC analysis, the combined analysis of reversing and non-reversing heat signals provides better results. The latter confirms that the melting is not a physical one-step process, but equilibrates between phase transitions and enthalpic reorganizations of the fatty acids that can be monitored separately. The specific heat capacities measured during modulated DSC are somewhat lower than traditional calorimetric measurements, but relate to the degree of unsaturation. The thermal behavior of palm-, soy-, sunflower-, corn-, castor-, and rapeseed-oil is discussed in relation to their composition, by applying a first or second heating scan.


Thermal analysis Heat Flow Heat capacity Modulated DSC Vegetable oil 



P. Samyn acknowledges the Robert Bosch Foundation for support in the Junior professorship program. H. Van den Abbeele and G. Schoukens thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (I.W.T.) for a funding program ‘SNAP’ (contract grant IWT-080213).


  1. 1.
    López Sastre JA, San José Alonso J, Romero-Ávila García C, López Romero-Ávila EL, Rodríguez Alonso C. A study of the decrease in fossil CO2 emissions of energy generation by using vegetable oils as combustible. Build Environ. 2003;38:129–33.CrossRefGoogle Scholar
  2. 2.
    Galià M, de Espinosa LM, Ronda JC, Lligadas G, Cádiz V. Vegetable oil-based thermosetting polymers. Eur J Lipid Sci Technol. 2010;112:87–96.CrossRefGoogle Scholar
  3. 3.
    Lopes RVV, Loureiro NPD, Zamian JR, Fonseca PS, Macedo JL, dos Santos ML, Sales MJA. Synthesis and characterization of polymeric materials from vegetable oils. Macromol Symp. 2009;286:89–94.CrossRefGoogle Scholar
  4. 4.
    Wang C, Erhan S. Studies of thermal polymerisation of vegetable oils with a differential scanning calorimeter. JAOCS. 1999;76:1211–6.CrossRefGoogle Scholar
  5. 5.
    Santos JCO, Dantas JP, Medeiros CA, Athaíde-Filho PF, Conceiçăo MM, Santos JR, Souza AG. Thermal analysis in sustainable development: thermoanalytical study of faveleira seeds (Cnidoscolus quercifolius). J Therm Anal Calorim. 2005;79:271–5.CrossRefGoogle Scholar
  6. 6.
    dos Reis SCM, Lachter ER, Nascimento RSC, Rodrigues JA, Reid MG. Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. JAOCS. 2005;82:661–5.CrossRefGoogle Scholar
  7. 7.
    Correia IMS, Souza MJB, Araújo AS, Sousa EMBD. Thermal stability during pyrolysis of sunflower oil produced in the northeast of Brazil. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1773-5.
  8. 8.
    Tavares MLA, Queiroz N, Santos IMG, Souza AL, Cavalcanti EHS. The use of DSC in evaluation of antioxidant efficiency. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1357-4.
  9. 9.
    Conceição MM, Fernandes VV Jr, Bezerra AF, Silva MCD, Santos IMG, Silva FC, Souza AG. Dynamic kinetic calculation of castor oil biodiesel. J Therm Anal Calorim. 2007;87:865–9.CrossRefGoogle Scholar
  10. 10.
    Dantas MB, Almeida AAF, Conceição MM, Fernandes VJ, Santos IMG, Silva FC, Soledade LEB, Souza AG. Characterization and kinetic compensation effect of corn biodiesel. J Therm Anal Calorim. 2007;87:847–51.CrossRefGoogle Scholar
  11. 11.
    Stanssens D, Van den Abbeele H, Vonck L, Schoukens G, Deconinck M, Samyn P. Creating water-repellent and superhydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett. 2011;65:1781–4.CrossRefGoogle Scholar
  12. 12.
    Dyszel SM. A rapid screening technique for vegetable oil identity by sub-ambient DSC. Thermochim Acta. 1982;57:209–21.CrossRefGoogle Scholar
  13. 13.
    Nassu RT, Goncalves LAG. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC) technique. Grasas Aceitas. 1999;50:16–22.CrossRefGoogle Scholar
  14. 14.
    Kaisersberger E. DSC investigations of thermal characterization of edible fats and oils. Thermochim Acta. 1989;151:83–90.CrossRefGoogle Scholar
  15. 15.
    Sessa DJ, Nelson TC, Kleiman R, Arquette JD. Differential scanning calorimetry index for estimation level of saturation in transesterified wax esters. JAOCS. 1996;73:271–3.CrossRefGoogle Scholar
  16. 16.
    Santos JCO, Santos MGO, Dantas JP, Conceicao MM, Athaide-Filho PF, Souza AG. Comparative study of specific heat capacities of some vegetable oils obtained by DSC and microwave oven. J Therm Anal Calorim. 2009;79:283–7.CrossRefGoogle Scholar
  17. 17.
    Tochitani Y, Fujimoto M. Measurement of specific heat capacity of vegetable oils. Netsu Bussei. 2001;15:230–6.CrossRefGoogle Scholar
  18. 18.
    Tan CP, Che Man YB. Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition. JAOCS. 2000;77:143–55.CrossRefGoogle Scholar
  19. 19.
    Salimon J, Abdullah BM. A study on the thermal properties and solid fat content of Malaysian rubber seed oil. Malays J Anal Sci. 2009;13:1–7.Google Scholar
  20. 20.
    Kowalski B. Determination of spontaneous ignition temperatures of edible oils and fats by pressure differential scanning calorimetry. Thermochima Acta. 1990;173:117–27.CrossRefGoogle Scholar
  21. 21.
    Dian NLH, Sundral K, Idris NA. DSC study on the melting properties of palm oil, sunflower oil, and palm kernel olein blends before and after chemical interesterification. JAOCS. 2006;83:739–45.CrossRefGoogle Scholar
  22. 22.
    Siew WL. Crystallisation and melting behaviour of palm kernel oil and related products by differential scanning calorimetry. Eur J Lipid Sci Technol. 2001;103:729–34.CrossRefGoogle Scholar
  23. 23.
    Kawamura K. The DSC thermal analysis of crystallization behaviour in high erucic acid rapeseed oil. JAOCS. 1981;8:826–9.Google Scholar
  24. 24.
    Zhang L, Muramoto H, Ueno S, Sato K. Crystallisation of fully hydrogenated and interesterified fat and vegetable oil. J Oleo Sci. 2011;60:287–92.CrossRefGoogle Scholar
  25. 25.
    Tan CP, Che Man YB. Quantitative differential scanning calorimetric analysis for determining total polar compounds in heated oils. JAOCS. 1999;9:1047–57.Google Scholar
  26. 26.
    Danthine SB, Gibon V, Deroanne C. Physicochemical characteristics of ternary fat blends involving low-erucic rapeseed oil. Eur J Lipid Sci Technol. 2005;107:627–33.CrossRefGoogle Scholar
  27. 27.
    Siddique BM, Ahmad A, Ibrahim MH, Hena S, Rafatullah M, Omar M. Physico-chemical properties of blends of palm olein with other vegetable oils. Grasas Aceites. 2010;61:423–9.CrossRefGoogle Scholar
  28. 28.
    de Sousa AG, Santos JCO, Conceicao MM, Silva MC, Prasad S. A thermoanalytical and kinetic study of sunflower oil. Braz J Chem Eng. 2004;21:265–73.CrossRefGoogle Scholar
  29. 29.
    Nzikou JM, Matos L, Moussounga JE, Ndangiu CB, Pambou-Tobi NP, Bandzouzi EM, Kimbonguila A, Linder M, Desobry S. Study of oxidative and thermal stability of vegetable oils during frying. Res J Appl Sci. 2009;4:94–100.Google Scholar
  30. 30.
    Azis A, Mohamud Y, Roselina K, Boo HC, Nyuk L, Che Man YB. Rheological, chemical and DSC thermal characteristics of different types of palm oil/palm stearing-based shortenings. Int Food Res J. 2011;18:189–200.Google Scholar
  31. 31.
    Abdulkarim SM, Ghazali HM. Comparison of melting behaviours of edible oils using conventional and hyper differential scanning calorimetric scan rates. ASEAN Food J. 2007;14:25–35.Google Scholar
  32. 32.
    Tan CP, Che Man YB. Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation. Phytochem Anal. 2002;13:129–41.CrossRefGoogle Scholar
  33. 33.
    Kanavouras A, Selke S. Evolution of thermograph parameters during the oxidation of extra virgin olive oil. Eur J Lipid Sci Technol. 2004;106:359–68.CrossRefGoogle Scholar
  34. 34.
    Samyn P, Van Nieuwkerke D, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H. Quality and statistical quantification of Brazilian vegetable oils using FTIR and Raman spectroscopy. Appl Spectrosc. 2011.Google Scholar
  35. 35.
    Carneiro PIB, Reda SY, Carneiro EBB. H-NMR characterization of seed oils from Rangpur lime and Sicilian lemon. Ann Magn Reson. 2005;4:64–8.Google Scholar
  36. 36.
    Van de Voort FR, Ismail AA, Sedman J, Dubois J, Nicodemo T. The determination of peroxide value by Fourier transform infrared spectroscopy. JAOCS. 1994;71:921–6.CrossRefGoogle Scholar
  37. 37.
    Che Man YB, Mirghani MES. Rapid method for determining moisture content in crude palm oil by Fourier transform infrared spectroscopy. JAOCS. 2000;77:631–7.CrossRefGoogle Scholar
  38. 38.
    Deman JM, Deman L, Blackman B. Melting-point determination of fat products. JAOCS. 1983;60:15–8.Google Scholar
  39. 39.
    Che Man YB, Haryati GT, Asbi BA. Composition and thermal profile of crude palm oil and its products. JAOCS. 1999;76:215–20.CrossRefGoogle Scholar
  40. 40.
    Jacobsberg B, Ho OC. Studies in palm oil crystallization. JAOCS. 1976;71:609–17.Google Scholar
  41. 41.
    Czerniak SA, Karlovits G, Lach M, Szyk E. X-ray diffraction and differential thermal scanning calorimetry studies of transitions in fat mixtures. Food Chem. 2005;92:133–41.CrossRefGoogle Scholar
  42. 42.
    Chiavarro E, Vittadini E, Rodriguez-Estrada MT, Cerretani L, Bendini A. Differential scanning calorimeter application to the detection of refined hazelnut oil in extra virgin olive oil. Food Chem. 2008;110:248–56.CrossRefGoogle Scholar
  43. 43.
    Chen CW, Chong CL, Ghazali HM, Lai OM. Interpretation of triacylglycerol profiles of palm oil, palm kernel oil and their binary blends. Food Chem. 2007;100:178–91.CrossRefGoogle Scholar
  44. 44.
    Masson JF, Polomark GM, Collins P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuel. 2002;16:470–6.CrossRefGoogle Scholar
  45. 45.
    Wunderlich B, Okazaki I, Ishikiriyama K, Boller A. Melting by temperature-modulated calorimetry. Thermochim Acta. 1998;324:77–85.CrossRefGoogle Scholar
  46. 46.
    Che Man YB, Swe PZ. Thermal analysis of failed-batch palm oil by differential scanning calorimetry. JAOCS. 1995;72:1529–32.CrossRefGoogle Scholar
  47. 47.
    Siew WL, Ong ASH, Oh FCH, Berger KG. Critical aspects of slip melting point measurements. PORIM Bull. 1982;4:1–18.Google Scholar
  48. 48.
    Morad NA, Kamal AAM, Panau F, Yew TW. Liquid specific heat capacity estimation for fatty acids, triacylglycerols and vegetable oils based on their fatty acid composition. JAOCS. 2000;77:1001–5.CrossRefGoogle Scholar
  49. 49.
    Choi Y, Okos MR. Food engineering and process applications, vol 1. In: Jelen P, Le Maguer M, editors. Transport phenomena. London: Elsevier Applied Science; 1986. p. 93–101.Google Scholar
  50. 50.
    Heidenreich S, Langner T, Rohm H. Heat capacity of cheese. J Therm Anal Calorim. 2007;89:815–9.CrossRefGoogle Scholar
  51. 51.
    Fasina OO, Colley Z. Viscosity and specific heat of vegetable oils as a function of temperature: 35°C to 180°C. Int J Food Prop. 2008;11:738–46.CrossRefGoogle Scholar
  52. 52.
    Rodenbush CM, Hsieh FH, Viswanath DS. Density and viscosity of vegetable oils. JAOCS. 1999;76:1415–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Pieter Samyn
    • 1
  • Gustaaf Schoukens
    • 2
  • Leo Vonck
    • 3
  • Dirk Stanssens
    • 3
  • Henk Van den Abbeele
    • 3
  1. 1.Institute for Forest UtilizationAlbert-Ludwigs-University FreiburgFreiburgGermany
  2. 2.Department of TextilesGhent UniversityZwijnaardeBelgium
  3. 3.Topchim N.VWommelgemBelgium

Personalised recommendations