Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 3, pp 1341–1352 | Cite as

Influence of temperature on thermodynamic properties of acid–base liquid mixtures

An ultrasonic, volumetric, and viscometric study
  • K. Sreekanth
  • M. Kondaiah
  • D. Sravana Kumar
  • D. Krishna Rao
Article

Abstract

Ultrasonic velocity, u density, ρ and viscosity, η of mixtures of N,N-dimethyl acetamide with equimolar mixture of ethanol + isopropyl alcohol/isobutyl alcohol/isoamyl alcohol, including those of pure liquids over the entire composition have been measured at T = 308.15, 313.15, and 318.15 K. Using this data, various thermo-acoustic parameters such as deviations in ultrasonic velocity, ∆u, isentropic compressibility, ∆k s , viscosity, Δη, excess molar volume, \( V_{\text{m}}^{\text{E}} \) and excess Gibb’s free energy of activation for viscous flow, ΔG *E have been calculated at different temperatures. The calculated deviation and excess functions have been fitted to the Redlich–Kister type polynomial equation. The influence of temperature on the observed negative and positive values of deviation and excess thermodynamic properties has been explained in terms of molecular interactions present in the investigated acid–base liquid mixtures. The experimental data of ultrasonic velocity have been used to check the applicability of velocity models of Nomoto, Van Dael and Vangeel and Junjie and viscosity data have also been availed to test the applicability of standard viscosity models of Grunberg-Nissan, Hind-Mc Laughlin, and Katti-Chaudhary for all the systems investigated at various temperatures.

Keywords

Density Excess molar volume Redlich–Kister type polynomial Aliphatic alcohols Molecular interactions Temperature effect 

Notes

Acknowledgements

The authors are thankful to University Grants Commission (U.G.C), New Delhi, and Government of India for providing financial support through infrastructure grant under DRS-SAP program (Letter No. F4-1/2006/(BSR)/7-2/2007(BSR) Dated 23-12-2008) and one of the authors, K. Sreekanth is grateful to U.G.C for providing him a Teacher Fellowship under F.D.P XI plan.

References

  1. 1.
    Sreekanth K, Sravan Kumar D, Kondaiah M, Krishna Rao D. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N, N-dimethylacetamide at 308.15 K. Phys B. 2011;406:854–8.CrossRefGoogle Scholar
  2. 2.
    Sreekanth K, Sravan Kumar D, Kondaiah M, Krishna Rao D. Study of molecular interactions in the mixtures of secondary alcohols with equimolar mixture of ethanol + formamide from acoustic and thermodynamic parameters. J Chem Pharm Res. 2011;3:29–41.Google Scholar
  3. 3.
    Sravana kumar D, Sreekanth K, Krishna Rao D. Molecular interactions in the mixtures of 2-chloroaniline with equi molar mixture of methanol and isopropanol/isobutanol. J Mol Liq. 2007;136:90–3.CrossRefGoogle Scholar
  4. 4.
    Sravan kumar D, Krishana Rao D. Molecular interactions in the mixtures of 2- chloroaniline with equimolar mixture of methanol and isopropanol/isobutanol. Indian J Pure Appl Phys. 2007;45:210–20.Google Scholar
  5. 5.
    Kondaiah M, Sravana Kumar D, Sreekanth K, Krishna Rao D. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N, N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K. J Chem Thermodyn. 2011;43:1844–50.CrossRefGoogle Scholar
  6. 6.
    Resa JM, Gonzalez C, Goenaga JM, Iglesias M. Influence of temperature on ultrasonic velocity measurements of ethanol + water + 1-propanol mixtures. J Therm Anal Calorim. 2007;87:237–45.CrossRefGoogle Scholar
  7. 7.
    Pikkarainen L. Densities and viscosities of binary mixtures of N,N- dimethylacetamide with aliphatic alcohols. J Chem Eng Data. 1983;28:344–7.CrossRefGoogle Scholar
  8. 8.
    Jan Zielkiewicz. Excess volumes of mixing in (N,N-dimethyl acetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water) at the temperature 313.15 K. J Chem Thermodyn. 2008;40:431–6.CrossRefGoogle Scholar
  9. 9.
    Pal A, Bhardwaj RK. Excess molar volumes and viscosities for binary mixtures of 2-propoxyethanol and of 2-isopropoxyethanol with 2-pyrrolidinone, N-methyl-2-pyrrolidinone, N,N-dimethylformamide, and N,N-dimethylacetamide at 298.15 K. J Chem Eng Data. 2002;47:1128–34.CrossRefGoogle Scholar
  10. 10.
    Iloukhani H, Zarei HA, Behroozi M. Thermodynamic studies of ternary mixtures of diethylcarbonate (1) + dimethylcarbonate (2) + N,N-dimethylacetamide (3) at 298.15 K. J Mol Liq. 2007;135:141–5.CrossRefGoogle Scholar
  11. 11.
    Rafiqul Islam M, Quadri SK. Ultrasonic velocity and viscosity of binary liquid mixtures. Thermochim Acta. 1987;115:335–44.CrossRefGoogle Scholar
  12. 12.
    Vogel AI. Text book of organic chemistry. 5th ed. New York: John Wiley; 1989.Google Scholar
  13. 13.
    Parker HC, Parker EW. Densities of certain aqueous Potassium chloride solutions as determined with a new pyknometer. Phys Chem. 1925;29:130–7.CrossRefGoogle Scholar
  14. 14.
    Ujjan Kdam B, Apoorva Hiray P, Arun Sawant B. Mehdi Hasan. Densities, viscosities and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T = (298.15 and 308.15) K. J Chem Thermodyn. 2006;38:1675–83.CrossRefGoogle Scholar
  15. 15.
    Nikam PS, Shirsat LN. Mehdi Hasan. Density and viscosity studies of binary mixtures of acetonitrile with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1- ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15). J Chem Eng Data. 1998;43:732–7.CrossRefGoogle Scholar
  16. 16.
    Pal A, Singh YP. Excess molar volumes and apparent molar volumes of some amide + water systems at 303.15 and 308.15 K. J Chem Eng Data. 1995;40:818–22.CrossRefGoogle Scholar
  17. 17.
    Thirumaran S, Ramesh J. Acoustic and excess thermodynamical studies on 1- alkanols with DMA in Cyclohexanone at different temperatures. Rasayan J Chem. 2009;2:733–9.Google Scholar
  18. 18.
    Sravana Kumar D. Ultrasonic, volumetric, and viscometric in liquid mixtures andsolutions Ph.D Thesis. Acharya Nagarjuna University. Guntur. India;2007.Google Scholar
  19. 19.
    Sakurai M. Partial molar volumes in aqueous mixtures of nonelectrolytes, II. Isopropyl alcohol. J Solution Chem. 1988;17:267–75.CrossRefGoogle Scholar
  20. 20.
    Riggio R, Ramos JF, Ubeda MH, Espindola JA. Mixtures of methyl isobutyl ketone with three butanols at various temperatures. Can J Chem. 1981;59:3305–8.CrossRefGoogle Scholar
  21. 21.
    Nain AK. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1, 2-ethanediol and 1, 2-propanediol at different temperatures. J Mol Liq. 2008;140:108–16.CrossRefGoogle Scholar
  22. 22.
    Bhuiyan MMH, Uddin MH. Excess molar volumes, excess viscosities for mixtures of N,N-dimethylformamide with methanol, ethanol and 2-propanol at different temperatures. J Mol Liq. 2008;138:139–46.CrossRefGoogle Scholar
  23. 23.
    Nain AK. Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 and 318.15 K. J Chem Thermodyn. 2006;38:1362–70.CrossRefGoogle Scholar
  24. 24.
    Nain AK. Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl- 2-propanol at different temperatures. Fluid Phase Equilib. 2007;259:218–27.CrossRefGoogle Scholar
  25. 25.
    Nain AK, Srivastava T, Pandey JD, Gopal S. Densities, ultrasonic speeds and excess properties of binary mixtures of methyl acrylate with 1-butanol, or 2-butanol, or 2- methyl-1-propanol, or 2-methyl-2-propanol at temperatures from 288.15 to 318.15 K. J Mol Liq. 2009;149:9–17.CrossRefGoogle Scholar
  26. 26.
    Iloukhani H, Rakshi M. Excess molar volumes, viscosities, and refractive indices for binary and ternary mixtures of cyclohexanone (1) + N,N-dimethylacetamide (2) + N,N-diethylethanolamine (3) at (298.15, 308.15, and 318.15) K. J Mol Liq. 2009;149:86–95.CrossRefGoogle Scholar
  27. 27.
    Nani AK, Sharma R, Ali A, Gopal S. Densities and volumetric properties of ethyl acrylate + 1-butanol, or 2-butanol, or 2-methyl-1-propanol, or 2-methyl-2-propanol binary mixtures at temperatures from 288.15 to 318.15 K. J Mol Liq. 2009;144:138–44.CrossRefGoogle Scholar
  28. 28.
    Anson A, Garriga R, Martinez S, Perez P, Gracia M. Densities and viscosities of binary mixtures of 1-chlorobutane with butanol isomers at several temperatures. J Chem Eng Data. 2005;50:677–82.CrossRefGoogle Scholar
  29. 29.
    Iloukhani H, Rostami Z. Measurement of some thermodynamic, acoustic properties of binary solutions of N,N-Dimethylformamide with 1-Alkanols at 300c and comparison theories. J Solution Chem. 2003;32:451–62.CrossRefGoogle Scholar
  30. 30.
    Redlich O, Kister AT. Algebric representation of thermodynamic properties and the classification solutions. Ind Eng Chem. 1948;40:345–8.CrossRefGoogle Scholar
  31. 31.
    Caminati W, Wilson EB. Internal hydrogen bond, torsional motion, and molecular properties of 2-methoxyethylamine by microwave spectroscopy : methyl barrier to internal rotation for 2-methoxyethanol. J Mol Spectroscop. 1980;81:356–72.CrossRefGoogle Scholar
  32. 32.
    Peterson RC. Interactions on the binary liquid systems N,N-Dimethylacetamide- water: viscosity and density. J Phys Chem. 1960;64:184–5.CrossRefGoogle Scholar
  33. 33.
    Pauling L. The nature of the chemical bond. 2nd ed. Ithaca: Cornell Univ. Press; 1940.Google Scholar
  34. 34.
    Solimo HN, Riggio R, Davolio F, Katz M. Internal hydrogen bond, torsional motion, and molecular properties of 2-methoxyethylamine by microwave spectroscopy : methyl barrier to internal rotation for 2-methoxyethanol. Can J Chem. 1974;53:1258–62.CrossRefGoogle Scholar
  35. 35.
    Ranjith Kumar B, Murali Krishna P, Asra Banu S, Amara Jyothi K, Savitha Jyostna T, Satyanarayana N. Acoustic, viscometric and volumetric properties of binary mixtures of N-methylacetamide with some alophatid mono and di alkyl amines at T = 308.15 K. Phy Chem Liq. 2010;48:79–88.CrossRefGoogle Scholar
  36. 36.
    Nomoto O. Empirical formula for sound velocity in binary liquid mixtures. J Phys Soc Jpn. 1958;13:1528–32.CrossRefGoogle Scholar
  37. 37.
    Van Dael W. Thermodynamic properties and velocity of sound. Chap. 5. London: Butterworth; 1975.Google Scholar
  38. 38.
    Savaroglu G, Aral E. Densities, speeds of sound and isentropic compressibilities of the ternary mixture 2-propanol + acetone + cyclohexane and the constituent binary mixtures at 298.15 and 303.15 K. Fluid Phase Equilib. 2004;215:253–62.CrossRefGoogle Scholar
  39. 39.
    Gurnberg L, Nissan AH. Mixture law for viscosity. Nature. 1949;164:799–800.CrossRefGoogle Scholar
  40. 40.
    Hind RK, Mc Laughlin E, Ubbelohde AR. Structure and viscosity of liquids camphor + pyrene mixtures. Trans Faraday Soc. 1960;56:328–30.CrossRefGoogle Scholar
  41. 41.
    Katti PK, Chaudhari MM. Viscosities of binary mixtures of benzyl acetate with dioxane, aniline and m- cresol. J Chem Eng Data. 1964;9:442–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • K. Sreekanth
    • 1
  • M. Kondaiah
    • 1
  • D. Sravana Kumar
    • 2
  • D. Krishna Rao
    • 1
  1. 1.Department of PhysicsAcharya Nagarjuna UniversityNagarjuna NagarIndia
  2. 2.SVLNS Govt. Degree CollegeBheemunipatnamIndia

Personalised recommendations