Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 2, pp 799–805 | Cite as

An investigation of decomposition stages of a ruthenium polypridyl complex by non-isothermal methods



Thermal properties of [cis-(dithiocyanato)(4,5-diazafluoren-9-one)(4,4′-dicarboxy-2,2′-bipyridyl)ruthenium(II)], [Ru(L 1)(L 2)(NCS)2] (where the ligands L 1 = 4,5-diazafluoren-9-one, L 2 = 4,4′-dicarboxy-2,2′-bipyridyl) have been investigated by DTA/TG/DTG measurements under inert atmosphere in the temperature range of 30–1155 °C. The mass spectroscopy technique has been used to identify the products during pyrolytic decomposition. The pyrolytic final products have been analyzed by X-ray powder diffraction technique. A decomposition mechanism has been also suggested for the cis-[Ru(L 1)(L 2)(NCS)2] complex based on the results of thermogravimetrical and mass analysis. The values of the activation energy, E* have been obtained by using model-free Kissenger–Akahira–Sunose and Flyn–Wall–Ozawa non-isothermal methods for all decomposition stages. Thirteen kinetic model equations have been tested for selecting the best reaction models. The best model equations have been determined as A2, A3, D1, and D2 which correspond to nucleation and growth mechanism for A2 and A3 and diffusion mechanism for D1 and D2. The optimized average values of E* are 31.35, 58.48, 120.85, and 120.56 kJ mol−1 calculated by using the best model equations for four decomposition stages, respectively. Also, the average Arrhenius factor, A, has been obtained as 2.21, 2.61, 2.52, and 2.21 kJ mol−1 using the best model equation for four decomposition stages, respectively. The ΔH*, ΔS*, and ΔG* functions have been calculated using the optimized values.


Ruthenium complex Thermal behavior Dye sensitized solar cell Polypyridyl complexes Photosensitizer Charge transfer sensitizer 


  1. 1.
    Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B. 2003;107:8981–7.CrossRefGoogle Scholar
  2. 2.
    Gratezel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A. 2004;164:3–14.CrossRefGoogle Scholar
  3. 3.
    Ocakoglu K, Zafer C, Cetinkaya B, Icli S. Synthesis, characterization, electrochemical and spectroscopic studies of two new heteroleptic Ru(II) polypyridyl complexes. Dyes Pigment. 2007;75:385–94.CrossRefGoogle Scholar
  4. 4.
    Ocakoglu K, Yildirim Y, Lambrecht FY, Ocal J, Icli S. Biological investigation of 131I-labeled new water soluble Ru(II) polypyridyl complex. Appl Radiat Isot. 2008;66:115–21.CrossRefGoogle Scholar
  5. 5.
    Ocakoglu K, Yakuphanoglu F, Durrant JR, Icli S. The charge transport and transient absorption properties of a dye-sensitized solar cell. Sol Energy Mater Sol C. 2008;92:1047–53.CrossRefGoogle Scholar
  6. 6.
    Xie PH, Hou YJ, Zhang BW, Cao Y, Wu F, Tian WJ, Shen JC. Spectroscopic and electrochemical properties of ruthenium(II) polypyridyl complexes. J Chem Soc Dalton Trans. 1999;23:4217–21.CrossRefGoogle Scholar
  7. 7.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Kaden TA, Gratezel M. Determination of pKa values of 4-phosphonato-2,20:60,200-terpyridine and its ruthenium(II)-based photosensitizer by NMR, potentiometric, and spectrophotometric methods. Inorg Chem. 2000;39:4542–7.CrossRefGoogle Scholar
  8. 8.
    Rice CR, Ward MD, Nazeeruddin MK, Gratezel M. Catechol as an efficient anchoring group for attachment of ruthenium-polypyridine photosensitizers to solar cells based on nanocrystalline TiO2 films. New J Chem. 2000;24:651–2.CrossRefGoogle Scholar
  9. 9.
    Sahin C, Tozlu C, Ocakoglu K, Zafer C, Varlikli C, Icli S. Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg Chim Acta. 2008;361:671–6.CrossRefGoogle Scholar
  10. 10.
    Amirnasr M, Nazeeruddin MK, Grätzel M. Thermal stability of cis-dithiocyanato(2,20-bipyridyl4,40dicarboxylate)ruthenium(II) photosensitizer in the free form and on nanocrystalline TiO2 films. Thermochim Acta. 2000;348:105–14.CrossRefGoogle Scholar
  11. 11.
    Rau S, Walther D, Vos JG. Inspired by nature: light driven organometallic catalysis by heterooligonuclear Ru(II) complexes. Dalton Trans. 2007;9:915–9.CrossRefGoogle Scholar
  12. 12.
    Takeda H, Koike K, Inoue H, Ishitani O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc. 2008;130:2023–31.CrossRefGoogle Scholar
  13. 13.
    Hayashi Y, Kita S, Brunschwig BS, Fujita E. Involvement of a binuclear species with the Re–C(O)O–Re moiety in CO2 reduction catalyzed by tricarbonyl rhenium(I) complexes with diimine ligands: strikingly slow formation of the Re–Re and Re–C(O)O–Re species from Re(dmb)(CO)3S (dmb = 4,4′-dimethyl-2,2′-bipyridine, S = Solvent. J Am Chem Soc. 2003;125:11976–87.CrossRefGoogle Scholar
  14. 14.
    Ocakoglu K, Emen FM. Thermal analysis of cis-(dithiocyanato) (1,10-phenanthroline-5,6-dione)(4,40-dicarboxy-2,20-bipyridyl)ruthenium(II)photosensitizer. J Therm Anal Calorim. 2011;104(3):1017–22.CrossRefGoogle Scholar
  15. 15.
    Cilgi GK, Cetisli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.CrossRefGoogle Scholar
  16. 16.
    Kücük F, Yildiz K. The decomposition kinetics of mechanically activated alunite ore in air atmosphere by thermogravimetry. Thermochim Acta. 2006;448:107–10.CrossRefGoogle Scholar
  17. 17.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  18. 18.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70A:487–523.CrossRefGoogle Scholar
  19. 19.
    Kissinger HE. Reaction of peak temperature with heating rate in different thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  20. 20.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  21. 21.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.Google Scholar
  22. 22.
    Simon P. Isoconversional methods; fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.CrossRefGoogle Scholar
  23. 23.
    Koç S, Toplan N, Yildiz K, Toplan H. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2011;103:791–6.CrossRefGoogle Scholar
  24. 24.
    Wu W, Wu X, Lai S, Liao S. Non-isothermal kinetics of thermal decomposition of NH4ZrH(PO4)2·H2O. J Therm Anal Calorim. 2011;104:685–91.CrossRefGoogle Scholar
  25. 25.
    Sovizi MR, Anbaz K. Kinetic investigation on thermal decomposition of organophosphorous compounds. J Therm Anal Calorim. 2010;99:593–8.CrossRefGoogle Scholar
  26. 26.
    Stefano V, Romolo DR, Carla F. Kinetic study of decomposition for Co(II)- and Ni(II)-1,10-phenanthroline complexes intercalated in c-zirconium phosphate. J Therm Anal Calorim. 2009;97:805–10.CrossRefGoogle Scholar
  27. 27.
    Muraleedharan K, Kanan M, Ganga DT. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.CrossRefGoogle Scholar
  28. 28.
    Uemura K, Kitagawa S, Saito K, Fukui K, Matsumoto K. Thermodynamic aspect of reversible structural conversion induced by guest adsorption/desorption based on infinite Co(NCS)2Py4 (Py = pyridine) system. J Therm Anal Calorim. 2005;81:529–32.CrossRefGoogle Scholar
  29. 29.
    Alvarez V, Rodriguez E, Vazquez A. Thermal degradation and decomposition of jute/vinylester composites. J Therm Anal Calorim. 2006;85:383–9.CrossRefGoogle Scholar
  30. 30.
    Guinesi LS, Ribeiro CA, Crespi MS, Santos AF, Capela MV. Titanium(IV)-EDTA complex. J Therm Anal Calorim. 2006;85:301–7.CrossRefGoogle Scholar
  31. 31.
    Jun Z, Shuangjun C, Jing J, Xuming S, Xiaolin W, Zhongzi X. Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymer in diluents via thermally induced phase separation. J Therm Anal Calorim. 2010;101:243–54.CrossRefGoogle Scholar
  32. 32.
    Banjong B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.CrossRefGoogle Scholar
  33. 33.
    Huang JW, Chang CC, Kang CC, Yeh MY. Crystallization kinetics and nucleation parameters of Nylon6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta. 2008;468:66–74.CrossRefGoogle Scholar
  34. 34.
    Vyazovkin S, Burnham AK, Criado JM, Maqueda LAP, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  35. 35.
    Gabal MA. Non-isothermal studies for the decomposition course of CdC2O4–ZnC2O4 mixture in air. Thermochim Acta. 2004;412:55–62.CrossRefGoogle Scholar
  36. 36.
    Budrugeac P, Segal E. On the use of Diefallah’s composite integralmethod for the non-isothermal kinetic analysis of heterogenous solid-gas reactions. J Therm Anal Calorim. 2005;82:677–80.CrossRefGoogle Scholar
  37. 37.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  38. 38.
    Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and ScienceKirklareli UniversityKirklareliTurkey
  2. 2.Advanced Technology Research & Application CenterMersin UniversityMersinTurkey
  3. 3.Department of Chemistry, Faculty of Arts and ScienceMersin UniversityMersinTurkey

Personalised recommendations