Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 3, pp 1095–1105 | Cite as

Thermochemical production of hydrogen

Synthesis, characterization, and decomposition of copper oxychloride
  • A. Nixon
  • M. Ferrandon
  • M. H. Kaye
  • L. Trevani


Copper oxychloride, Cu2OCl2, was synthesized from CuCl, or CuCl2·2H2O in a tubular furnace in a dry air atmosphere between 325 and 400 °C. Thermal gravimetric and gas analysis of the reaction products were used to follow the decomposition of Cu2OCl2 in both dry air and argon environments. The thermograms show the release of chlorine and oxygen gases, the volatilization of CuCl, and a residue, identified as CuO, of ~17 to 25% which varies as the conditions of the run. A mechanism of reaction able to describe the experimental results has been proposed and used to explain other published data.


Copper oxychloride Hydrogen production Copper–chlorine cycle Melanothallite Thermogravimetric analysis Powder XRD 



We are grateful to Professor Brad Easton (UOIT) and Dr. Mike Gorton (University of Toronto) for supplying the TG and XRD systems, Professor Gregory Hope from Griffith University, Australia, for the synthesis of one of the copper oxychloride samples used as reference material. This work could not be performed without the support of the University of Ontario Institute of Technology, Argonne National Laboratory, Atomic Energy of Canada Limited and the Ministry of Research and Innovation through the Ontario Research Fund-Research Excellence program. This work was also supported by the U.S. Department of Energy’s Fuel Cell Technologies Program Offices. Argonne National Laboratory is managed for the U.S. Department of Energy by University of Chicago Argonne, LLC, under contract DE-AC-02-06CH11357.


  1. 1.
    Brown LC, Funk JF, Showalter SK. Initial screening of thermochemical water-splitting cycles for high efficiency generation of hydrogen fuels using nuclear power. GAA23373 report. San Diego, CA: General Atomics; 2000.Google Scholar
  2. 2.
    Lewis MA, Masin JG, O’Hare PA. Evaluation of alternative thermochemical cycles, part I: the methodology. Int J Hydrogen Energy. 2009;34:4115–24.CrossRefGoogle Scholar
  3. 3.
    Lewis MA, Masin JG. The evaluation of alternative thermochemical cycles—part II: the down-selection process. Int J Hydrogen Energy. 2009;34:4125–35.CrossRefGoogle Scholar
  4. 4.
    Lewis MA, Ferrandon MS, Tatterson DF, Mathias P. Evaluation of alternative thermochemical cycles—part III further development of the Cu–Cl cycle. Int J Hydrogen Energy. 2009;34:4136–45.CrossRefGoogle Scholar
  5. 5.
    Naterer GF, Suppiah S, Stolberg L, Lewis M, Wang Z, Gabriel K, Dincer I, Rosen MA, Spekkens P, Lvov S, Fowler M, Tremaine P, Mostaghimi J, Easton EB, Trevani L, Rizvi G, Ikeda BM, Kaye MH, Lu L, Pioro I, Smith WR, Secnik E, Jiang J, Avsec J. Canada’s program on nuclear hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energy. 2010;35:10905–26.CrossRefGoogle Scholar
  6. 6.
    Zamfirescu C, Dincer I, Naterer GF. Thermophysical properties of copper compounds in copper–chlorine thermochemical water splitting cycles. Int J Hydrogen Energy. 2010;35:4839–52.CrossRefGoogle Scholar
  7. 7.
    Naterer G, Suppiah S, Lewis M, Gabriel K, Dincer I, Rosen MA, Fowler M, Rizvi G, Easton EB, Ikeda BM, Kaye MH, Lu L, Pioro I, Spekkens P, Tremaine P, Mostaghimi J, Avsec J, Jiang J. Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu–Cl cycle. Int J Hydrogen Energy. 2009;34:2901–17.CrossRefGoogle Scholar
  8. 8.
    Wang Z, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN. Comparison of different copper–chlorine thermochemical cycles for hydrogen production. Int J Hydrogen Energy. 2009;34:3267–76.CrossRefGoogle Scholar
  9. 9.
    Muradov NZ, Veziroglu TN. Green path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy. 2008;33:6804–39.CrossRefGoogle Scholar
  10. 10.
    Litwin RZ, Pinkowski SM. Solar power for thermochemical production of hydrogen. US Patent US 7,726,127 B2, 2010.Google Scholar
  11. 11.
    Krivovichev SV, Filatov SK. The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. The Canadian Mineralogist. 2002;40:1185–90.CrossRefGoogle Scholar
  12. 12.
    Kawashima K, Okabe H, Suzuki K, Kuroiwa S, Akimitsu J, Sato KH, Koda A, Kadono R. Antiferromagnetic ordering in Cu2OCl2 studied by the muon spin rotation/relaxation technique. J Phys Condens Matter. 2007;19:145275/1–145275/5.Google Scholar
  13. 13.
    Parry TJ. I. Thermodynamics and magnetism of Cu2OCl2, II. Repairs to microcalorimeter. MSc. Thesis, Brigham Young University; 2008.Google Scholar
  14. 14.
    Sharkey JB, Lewin SZ. Thermochemical properties of the copper hydroxychlorides. Thermochim Acta. 1972;3:189–201.CrossRefGoogle Scholar
  15. 15.
    Ramamurthy P, Secco EA. Studies on metal hydroxy compounds. VII. Thermal analyses of copper derivatives. Can J Chem. 1969;47:2185–90.CrossRefGoogle Scholar
  16. 16.
    Walter-Lévy L, Goreaud M. Sur la formation des chlorures basiques cuivriques par voie sèche. Thermolyse des chlorures neutres et basiques. Bull Soc Chim Fr. 1971;2:444–50.Google Scholar
  17. 17.
    Serban M, Lewis M, Basco JK. Kinetic study of the hydrogen and oxygen production reactions in the copper-chloride thermochemical cycle. In: AIChE 2004, Spring National Meeting New Orleans, LA, April 25–29, 2004.Google Scholar
  18. 18.
    Ferrandon MS, Lewis MA, Tatterson DF, Gross A, Doizi D, Croize L, Dauvois V, Roujou JL, Zanella Y, Carles P. Hydrogen production by the Cu–Cl thermochemical cycle: Investigation of the key step of hydrolysing CuCl2 to Cu2OCl2 and HCl using a spray reactor. Int J Hydrogen Energy. 2010;35:992–1000.CrossRefGoogle Scholar
  19. 19.
    Li Z, Wang R, Zheng H, Xie K. Preparation of CuY catalyst using CuCl2 as precursor for vapour phase oxidative carbonylation of methanol to dimethyl carbonate. Fuel. 2010;89:1339–43.CrossRefGoogle Scholar
  20. 20.
    De Micco G, Bohé AE, Pasquevich DM. A thermogravimetric study of copper chlorination. J Alloys Compd. 2007;437:351–9.CrossRefGoogle Scholar
  21. 21.
    Herman F, Donald M, Charles FO, Glenn GO, Kirk TS. Othmer encyclopedia of chemical technology. 3rd ed. Canada: Wiley-Interscience; 1979.Google Scholar
  22. 22.
    Marin GD, Wang Z, Naterer GF, Gabriel K. Byproducts and reaction pathways for integration of Cu-Cl cycle of hydrogen production. Int J Hydrogen Energy. 2011. doi: 10.1016/j.ijhydene.2011.07.103.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • A. Nixon
    • 1
  • M. Ferrandon
    • 2
  • M. H. Kaye
    • 3
  • L. Trevani
    • 1
  1. 1.Faculty of ScienceUniversity of Ontario Institute of TechnologyOshawaUSA
  2. 2.Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneUSA
  3. 3.Faculty of Energy Systems and Nuclear ScienceUniversity of Ontario Institute of TechnologyOshawaUSA

Personalised recommendations