Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 2, pp 979–984 | Cite as

Synthesis, structure and thermodynamics of supermolecular compound [Ni3(Hdatrz)6(sca)2(H2O)4]sca·11H2O (Hdatrz = 3,5-diamino-1,2,4-triazole, H2sca = succinic acid)

  • Qi Yang
  • Gang Xie
  • Sanping Chen
  • Shengli Gao
Article

Abstract

A new supramolecular compound [Ni3(Hdatrz)6(sca)2(H2O)4]sca·11H2O (Hdatrz = 3,5-diamino-1,2,4-triazole, H2sca = succinic acid) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analysis. X-ray structural analysis reveals that the crystal is triclinic, space group P − 1 with lattice parameters a = 10.192(2) Å, b = 11.671(2) Å, c = 13.600(3) Å, β = 68.086(3)°, Z = 1, D c = 1.689 g/cm−3, F(000) = 728. The enthalpy change of the reaction of formation in water was determined by an RD496–CK2000 microcalorimeter at 25 °C with the value of −23.71 ± 0.023 kJ mol−1. In addition, the thermodynamics of the reaction of formation in water for the compound was investigated by changing the temperature of the reaction and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{\theta } \), \( \Updelta H_{ \ne }^{\theta } \) and \( \Updelta G_{ \ne }^{\theta } \) were obtained.

Keywords

Crystal structure 3,5-Diamino-1,2,4-triazole Succinic acid Enthalpy change Thermodynamic and thermokinetic parameters 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 20873100, 21173168 and 21127004), the Natural Science Foundation of Shaanxi Province (Grant Nos. 2010JQ2007 and 2010JK882) and the Science Foundation of Northwest University (Grant No. 09NW11).

References

  1. 1.
    Biradha K, Su CY, Vittal JJ. Recent developments in crystal engineering. Cryst Growth Des. 2011;11:875–86.CrossRefGoogle Scholar
  2. 2.
    Czylkowska A, Czakis-Sulikowska D, Kaczmarek A, Markiewicz M. Thermal behavior and other properties of Pr(III), Sm(III), Eu(III), Gd(III), Tb(III) complexes with 4,4′-bipyridine and trichloroacetates. J Therm Anal Calorim. 2011;105:331–9.CrossRefGoogle Scholar
  3. 3.
    Zhang QC, Liu Y, Bu XH, Wu T, Feng PY. A rare (3, 4)-connected chalcogenide superlattice and its photoelectric effect. Angew Chem Int Ed. 2008;47:113–7.CrossRefGoogle Scholar
  4. 4.
    Wang WG, Zhou AJ, Zhang WX, Tong ML, Chen XM, Nakano M, Beedle CC, Hendrickson DN. Giant heterometallic Cu17Mn28 cluster with Td symmetry and high-spin ground state. J Am Chem Soc. 2007;129:1014–5.CrossRefGoogle Scholar
  5. 5.
    Li XY, Wu YQ, Gu DH, Gan FX. Synthesis, spectral and thermal properties of some transition metal(II) complexes with a novel ligand derived from thiobarbituric acid. J Therm Anal Calorim. 2009;98:387–94.CrossRefGoogle Scholar
  6. 6.
    Xue BD, Yang Q, Chen SP, Gao SL. Synthesis, crystal structure, and thermodynamics of a high-nitrogen copper complex with N, N-bis-(1(2)H-tetrazol-5-yl) amine. J Therm Anal Calorim. 2010;101:997–1002.CrossRefGoogle Scholar
  7. 7.
    Bhattacharjee A, Roy D, Roy M. Thermal degradation of a molecular magnetic material: {N(n-C4H9)4[FeIIFeIII(C2O4)3]}∞. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1829-6.
  8. 8.
    Mereacre V, Lan YH, Clerac R, Ako AM, Hewitt IJ, Werndorfer W, Buth G, Anson CE, Powell AK. Family of Mn2IIILn2(μ 4-O) compounds: syntheses, structures, and magnetic properties. Inorg Chem. 2010;49:5293–402.CrossRefGoogle Scholar
  9. 9.
    Wei WX, Cui BB, Jiang XH, Lu LD. The catalytic effect of NiO on thermal decomposition of nitrocellulose. J Therm Anal Calorim. 2010;102:863–6.CrossRefGoogle Scholar
  10. 10.
    Robson R, Abrahams BF, Batten SR, Gable RW, Hoskins BF, Liu J. In supramolecular architecture. Washington DC: ACS Publications; 1992. p. 256–262.Google Scholar
  11. 11.
    Tong ML, Hu S, Wang J, Kitagawa S. Supramolecular isomerism in cadmium hydroxide phases. Temperature-dependent synthesis and structure of photoluminescent coordination polymers of α- and β-Cd2(OH)2(2, 4-pyda). Cryst Growth Des. 2005;3:837–9.CrossRefGoogle Scholar
  12. 12.
    Kasai K, Aoyagi M, Fujita M. Remarkable ability for induced-fit enclathration of organic molecules. J Chem Am Soc. 2000;122:2140–1.CrossRefGoogle Scholar
  13. 13.
    Haasnoot JG. Mononuclear, oligonuclear and polynuclear metal derivatives as ligands. Coord Chem Rev. 2000;200–202:131–85.CrossRefGoogle Scholar
  14. 14.
    Yang Q, Chen SP, Gao SL. An unexpected 3D (6, 8)-connected metal–organic framework {[Cu5(trz)(mal)2(fma)(H2O)4]·2H2O}: synthesis, structure and catalytic thermodecomposition for ammonium perchlorate. Inorg Chem Commun. 2009;12:1224–6.CrossRefGoogle Scholar
  15. 15.
    Guan W, Xue WF, Chen SP, Fang DW, Huang Y, Gao SL. Enthalpy of dilution of aqueous [C4mim][Gly] at 298.15 K. J Chem Eng Data. 2009;54:2871–3.CrossRefGoogle Scholar
  16. 16.
    Kilday MV. The enthalpy of solution of SRM 1665 (KCl). J Res Natl Inst Stand. 1980;85:467–81.CrossRefGoogle Scholar
  17. 17.
    Sheldrick GM. SHELXS-97, program for X-ray crystal structure determination. Göttingen: Göttingen University; 1997.Google Scholar
  18. 18.
    Gao SL, Ji M, Chen SP, Hu RZ, Shi QZ. The thermokinetics of the formation reaction of cobalt histidine complex. J Therm Anal Calorim. 2001;66:423–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry and Materials Science, Northwest UniversityXi’anChina

Personalised recommendations