Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 2, pp 439–443 | Cite as

Estimation of the storage life of dimethylol urea using non-isothermal accelerated testing

  • T. Fukumoto
  • P. S. Thomas
  • B. H. Stuart
  • P. Simon
  • G. Adam
  • R. Shimmon
  • J.-P. Guerbois
Article

Abstract

The mechanism and stability of dimethylol urea (DMU) to polycondensation were investigated using thermogravimetric analysis coupled with mass spectroscopy (TG-MS) for evolved gas analysis and a non-isothermal model-free induction period kinetic analysis using three temperature functions; the Arrhenius function and two non-Arrhenian functions. The polycondensation was observed to occur through a two-step process of condensation followed by elimination of formaldehyde during structural rearrangement as has been reported in the literature. The rate equations for each temperature function were evaluated and extrapolated to room (23 °C) and refrigerator (4 °C) temperature to estimate the length of the induction period for the onset of polycondensation for storage life prediction. Based on experience, estimates of the length of the induction periods and, hence, storage life, were most realistically predicted by the non-Arrhenian temperature functions.

Keywords

Dimethylol urea Polycondensation Induction period Non-isothermal kinetics TG 

References

  1. 1.
    Steele R, Giddings LE. Reaction of cellulose with dimethylol- and monomethylolureas. Ind Eng Chem. 1956;48:110–4.CrossRefGoogle Scholar
  2. 2.
    Pfuhler S, Wolf HU. Effects of the formaldehyde releasing preservatives dimethylol urea and diazolidinyl urea in several short-term genotoxicity tests. Mutat Res. 2002;514:133–46.Google Scholar
  3. 3.
    Marvel CS, Elliott JR, Boettner FE, Yuska H. The structure of urea-formaldehyde resins. J Am Chem Soc. 1946;68:1681–6.CrossRefGoogle Scholar
  4. 4.
    Minopoulou E, Dessiprib E, Chryssikosc GD, Gionisc V, Paipetisc A, Panayiotou C. Use of NIR for structural characterization of urea-formaldehyde resins. Int J Adhes Adhes. 2003;23:473–84.CrossRefGoogle Scholar
  5. 5.
    Hodgins TS, Hovey AG. Urea-formaldehyde film forming compositions. Ind. Eng.Chem. 1939;31:673–8.CrossRefGoogle Scholar
  6. 6.
    Christjanson P, Siimer K, Pehk T, Lasn I. Structural changes in urea-formaldehyde resins during storage. Eur J Wood Wood Prod. 2002;60:379–84.CrossRefGoogle Scholar
  7. 7.
    Langmaier F, Šivarová J, Mládek M, Kolomazník K. Curing adhesives of urea-formaldehyde type with collagen hydrolysates of chrome-tanned leather waste. J Therm Anal Calorim. 2004;75:205–19.CrossRefGoogle Scholar
  8. 8.
    Šimon P, Kučma A. DSC analysis of the induction period in the vulcanisation of rubber compounds. J Therm Anal Calorim. 1999;56:1107–13.CrossRefGoogle Scholar
  9. 9.
    Šimon P. Material stability predictions applying a new non-Arrhenian temperature function. J Therm Anal Calorim. 2009;97(2):391–6.CrossRefGoogle Scholar
  10. 10.
    Bishop DW, Thomas PS, Ray AS, Šimon P. Two-stage kinetic model for the α–β phase recrystallisation in nickel sulphide. J Therm Anal Calorim. 2001;64:201–10.CrossRefGoogle Scholar
  11. 11.
    Šimon P. The Single-step approximation: strong and weak sides. J Therm Anal Calorim. 2007;88(3):709–15.CrossRefGoogle Scholar
  12. 12.
    Šimon P, Hynek D, Malíková M, Cibulková Z. Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-arrhenius temperature functions. J Therm Anal Calorim. 2008;93(3):817–21.CrossRefGoogle Scholar
  13. 13.
    D’Alelio GF. Experimental Plastics and Synthetic Resins. New York: Wiley; 1955.Google Scholar
  14. 14.
    Kumlin K, Simonson R. Urea-formaldehyde resins. Part 2. The formation of N, N-dimethylolurea and trimethylolurea in urea-formaldehyde mixtures. Angew Makromolek Chem. 1978;72(1):67–74.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • T. Fukumoto
    • 1
  • P. S. Thomas
    • 1
  • B. H. Stuart
    • 1
  • P. Simon
    • 2
  • G. Adam
    • 1
  • R. Shimmon
    • 1
  • J.-P. Guerbois
    • 1
  1. 1.School of Chemistry and Forensic ScienceUniversity of Technology SydneySydneyAustralia
  2. 2.Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations