Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 3, pp 1161–1169 | Cite as

Kinetics of phase transition and thermal stability in Se80−x Te20Zn x (x = 2, 4, 6, 8, and 10) glasses

  • S. Faheem Naqvi
  • N. S. Saxena
Article

Abstract

Se80−x Te20Zn x (x = 2, 4, 6, 8, and 10) glasses have been prepared using conventional melt quenching technique. The kinetics of phase transformations (glass transition and crystallization) have been studied using differential scanning calorimetry (DSC) under non-isothermal condition at five different heating rates in these glasses. The activation energy of glass transition (E t), activation energy of crystallization (E c), Avrami exponent (n), dimensionality of growth (m), and frequency factor (K o) have been investigated for the better understanding of growth mechanism using different theoretical models. The activation energy is found to be highly dependent on Zn concentration. The rate of crystallization is found to be lowest for Se70Te20Zn10 glassy alloy. The thermal stability of these glasses has been investigated using various stability parameters. The values of these parameters were obtained using characteristic temperatures, such as glass transition temperature T g, onset crystallization temperature T c, and peak crystallization temperature T p. In addition to this, enthalpy-released during crystallization has also been determined. The values of stability parameters show that the thermal stability increases with the increase in Zn concentration in the investigated glassy samples.

Keywords

Amorphous materials Differential scanning calorimetry (DSC) Kinetics Thermal stability 

Notes

Acknowledgements

The authors thank Ms. Deepika for her help in various ways during the course of this study. FIST program in the Department of Physics, University of Rajasthan for using DSC is gratefully acknowledged.

References

  1. 1.
    Kotkata MF, Mansour Sh A. Crystallisation process analysis for Se0.95In0.5 and Se0.905In0.10 chalcogenide glasses using the contemporary isoconversional model. J Therm Anal Calorim. 2011;103:957–65.CrossRefGoogle Scholar
  2. 2.
    Kumar R, Sharma P, Rangra VS. Kinetics studies of bulk Se92Te8−xSnx (x = 0, 1, 2, 3, 4 and 5) semiconducting glasses by DSC technique. J Therm Anal Calorim. 2011.Google Scholar
  3. 3.
    Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.CrossRefGoogle Scholar
  4. 4.
    Kumar H, Mehta N, Kumar A. Effect of some chemical modifiers on the glass/crystal transformation in binary Se90In10 alloy. J Therm Anal Calorim. 2011;103:903–9.CrossRefGoogle Scholar
  5. 5.
    Chiba R, Funakoshi N. Crystallization of vacuum deposited Te–Se–Cu alloy film. J Non-Cryst Solids. 1988;105:149–54.CrossRefGoogle Scholar
  6. 6.
    Suri N, Bindra KS, Kumar P, Thangaraj R. Calorimetric studies of Se80−xTe20Bix bulk samples. J Non-Cryst Solids. 2007;353:1264–7.CrossRefGoogle Scholar
  7. 7.
    Vakkalanka S, Ferekided CS, Morel DL. Development of ZnSexTe1 − x p-type contacts for high efficiency tandem structures. Thin Solid Films. 2007;515:6132–5.CrossRefGoogle Scholar
  8. 8.
    Lyubin V, Klebanov M, Arsh A, Froumin N, Kolobov AV. Photoinduced diffusion of Zn in chalcogenide glassy films. J. Non-Cryst.Solids. 2003;326–327:189–92.CrossRefGoogle Scholar
  9. 9.
    Lyubin VM, Kolobov AV. Photoinduced processes in chalcogenide vitreous semiconductor-metal structure. J Non-Cryst Solids. 1987;90:489–95.CrossRefGoogle Scholar
  10. 10.
    Burke J. The Kinetics of phase transformation in metals. Oxford: Pergamon; 1965.Google Scholar
  11. 11.
    Dietzel A. Glass structure and glass properties. Glass Technol Ber. 1968;22:41.Google Scholar
  12. 12.
    Sakka S, Mackenzie JJD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145–62.CrossRefGoogle Scholar
  13. 13.
    Saad M, Poulin M. Glass forming ability criterion. Mater Sci Forum. 1987;19–20:11–8.CrossRefGoogle Scholar
  14. 14.
    Lafi OA, Imran MMA, Abdullah MK. Glass transition activation energy, glass-forming ability and thermal stability of Se90In10−xSnx (x = 2, 4, 6 and 8) chalcogenide glasses. Physica B. 2007;395:69–75.CrossRefGoogle Scholar
  15. 15.
    Pauling L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc. 1931;53:1367–400.CrossRefGoogle Scholar
  16. 16.
    Pauling l. The nature of chemical bond. 3rd ed. Ithaca: Cornell University Press; 1960.Google Scholar
  17. 17.
    Srivastava S, Mehta N, Shukla RK, Kumar A. Effect of Zn incorporation on the a.c. conductivity of glassy Se70Te30 alloy. Eur Phys J Appl Phys. 2008;44(3):217–21.CrossRefGoogle Scholar
  18. 18.
    Singh AK, Singh K. Crystallization kinetics and thermal stability of Se98−xZn2Inx chalcogenide glasses. Philos Mag. 2009;89:1457–72.CrossRefGoogle Scholar
  19. 19.
    Maharjan NB, Bhandari D, Saxena NS, Paudyal DD, Husain M. Kinetic Studies of Bulk Se85−xTe15Sbx Glasses with x = 0, 2, 4, 6, 8 and 10. Phys Stat Sol (a). 2000;178:663–70.CrossRefGoogle Scholar
  20. 20.
    Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.CrossRefGoogle Scholar
  21. 21.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.Google Scholar
  22. 22.
    White K, Crane RL, Snide JA. Crystallization kinetics of As–Sb–S glass in bulk and thin film form. J Non-Cryst Solids. 1988;103:210–20.CrossRefGoogle Scholar
  23. 23.
    March NH, Street RA, Toshi M. Amorphous solids and liquid state. New York: Plenum; 1985. p. 434.Google Scholar
  24. 24.
    Imran MMA, Bhandari D, Saxena N. Glass transition phenomena, crystallization kinetics and thermodynamic properties of ternary Se80Te20−xInx (x = 2, 4, 6, 8 and 10) semiconducting glasses: theoretical and experimental aspects. Mater Sci Eng A. 2000;692:56–65.Google Scholar
  25. 25.
    Mahadevan S, Giridhar A, Singh A. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.CrossRefGoogle Scholar
  26. 26.
    Matusita K, Konatsu T, Yokota RJ. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. Mater Sci. 1984;19:291–6.CrossRefGoogle Scholar
  27. 27.
    Kaur G, Komatsu T. Crystallization behavior of bulk amorphous Se-Sb-In system. J Mater Sci. 2001;36:4531–3.CrossRefGoogle Scholar
  28. 28.
    Duhaj P, Barancok D, Ondrejka A. The study of transformation kinetics of the amorphous Pd—Si alloys. J Non-Cryst Solids. 1976;21:411–28.CrossRefGoogle Scholar
  29. 29.
    Imran MMA, Saxena NS, Bhandari D, Husain M. Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100–xInx (x = 2, 4 and 10) semiconducting glasses. Phys Stat Sol (a). 2000;181:357–68.CrossRefGoogle Scholar
  30. 30.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calor. 1978;13:283–92.CrossRefGoogle Scholar
  31. 31.
    Shaaban ER, Tomsah IBI. The effect of Sb content on glass-forming ability, the thermal stability, and crystallization of Ge–Se chalcogenide glass. J Therm Anal Calorim. 2011. doi:  10.1007/s10973-011-1317-z.
  32. 32.
    Patial BS, Thakur N, Tripathi SK. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim. 2011. Google Scholar
  33. 33.
    Shaaban ER, Kansal I, Shapaan M, Ferreira JMF. Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Therm Anal Calorim. 2009;98:347–54.CrossRefGoogle Scholar
  34. 34.
    Kotkata MF, Mansour Sh A. Study of glass transition kinetics of selenium matrix alloyed with up to 10% indium. J Therm Anal Calorim. 2011;103:555–6.CrossRefGoogle Scholar
  35. 35.
    Naqvi SF, Deepika, Saxena NS, Bhandari D. Thermal stability and glass–forming ability of Se80−xTe20Agx (x = 0, 3, 5, 7 and 9) chalcogenide glasses. Phil Mag Lett. 2011;91:182–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Semi-conductor & Polymer Science Laboratory, Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations