Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 1, pp 335–344 | Cite as

Thermal and spectroscopic data to investigate the oxamic acid, sodium oxamate and its compounds with some bivalent transition metal ions

  • F. J. Caires
  • L. S. Lima
  • C. T. Carvalho
  • A. B. Siqueira
  • Oswaldo Treu-Filho
  • M. Ionashiro
Article

Abstract

Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH2C2O3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH2C2O3) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N2 atmospheres.

Keywords

Bivalent transition metal Oxamate Thermal behavior Theoretical calculations 

Notes

Acknowledgements

The authors acknowledge to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. This research was supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the Sao Paulo State University (UNESP), Instituto de Química de Araraquara, UNESP–Campus de Araraquara and CENAPAD-UNICAMP.

References

  1. 1.
    Wallace F, Wagner E. Infrared and far-infrared spectra of solid oxamic acid, deutero-oxamic acid and their salts. Spectrochim Acta A. 1978;34:589–606.CrossRefGoogle Scholar
  2. 2.
    Perlepes SP, Zafiropoulos TF, Kouinis JK, Galinos AG. Complexes of zinc-group metals with oxamic acid. Inorg Nucl Chem Lett. 1980;16:475–80.CrossRefGoogle Scholar
  3. 3.
    Shoeters G, Deleersnuder D, Desseyn HO. The complexes of oxamic acid with Ni(II). Spectrochim Acta A. 1983;39:71–6.CrossRefGoogle Scholar
  4. 4.
    Allan JR, Dalrymple J. The thermal, spectral and magnetic studies of oxamic acid compounds of cobalt(II), nickel(II) and copper(II) ions. Thermochim Acta. 1993;221:199–204.CrossRefGoogle Scholar
  5. 5.
    Vansant C, Desseyn HO, Perlepes SP. The synthesis, spectroscopic and thermal study of oxamic acid compounds of some metal(II) ions. Transition Met Chem. 1995;20:454–9.CrossRefGoogle Scholar
  6. 6.
    Keuleers R, Janssens J, Desseyn HO. Thermal analysis of oxamates, thiooxamates and their complexes Part 1. The ligands. Thermochim Acta. 1998;311:149–54.CrossRefGoogle Scholar
  7. 7.
    Keuleers R, Janssens J, Desseyn HO. Thermal analysis of oxamates, thiooxamates and their complexes Part 2. The Cu(II) complexes. Thermochim Acta. 1998;311:155–62.CrossRefGoogle Scholar
  8. 8.
    Rodrigues-Martin Y, Ruiz-Pérez C, Gonzáles-Platas J, Sanchiz J, Lloret F, Julve M. A new eight-coordinate complex of manganese(II): synthesis, crystal structure, spectroscopy and magnetic properties of [Mn(Hoxam)2(H2O)4] (H2 oxam_oxamic acid). Inorg Chim Acta. 2001;315:120–5.CrossRefGoogle Scholar
  9. 9.
    Lemos SC, Franchi SJS, Netto AVG, Mauro AE, Treu-Filho O, Frem RCG, Almeida ET, Torres C. Synthesis, characterization, thermal studies, and DFT calculations on Pd(II) complexes containing N-methylbenzylamine. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1494-9.
  10. 10.
    Carvalho CT, Caires FJ, Lima LS, Ionashiro M. Thermal investigation of solid 2-methoxycinnamylidenepyruvate of some bivalent transition metal ions. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1679-2.
  11. 11.
    Kalinowska M, Swislocka R, Lewandowski W. The spectroscopic (FT-IR, FT-Raman, UV and 1H, 13C NMR) and theoretical studies of alkali metal o-methoxybenzoates. J Mol Struct. 2006;792–793:130–8.CrossRefGoogle Scholar
  12. 12.
    Karabacak M, Cinar M, Kurt M. An experimental and theoretical study of molecular structure and vibrational spectra of 2-chloronicotinic acid by density functional theory and ab initio Hartree–Fock calculations. J Mol Struct. 2008;885:28–35.CrossRefGoogle Scholar
  13. 13.
    Caires FJ, Lima LS, Carvalho CT, Giagio RJ, Ionashiro M. Thermal behaviour of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2010;497:35–40.CrossRefGoogle Scholar
  14. 14.
    Flaschka HA. EDTA titrations. 2nd ed. Oxford: Pergamon Press; 1964.Google Scholar
  15. 15.
    Oliveira CN, Ionashiro M, Graner CAF. Titulação complexométrica de zinco, cobre e cobalto. Ecl Quim. 1985;10:7–10.Google Scholar
  16. 16.
    Becke AD. Density-functional thermochemistry III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.CrossRefGoogle Scholar
  17. 17.
    Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys. 1988;37:785–9.CrossRefGoogle Scholar
  18. 18.
    Mclean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys. 1980;72:5639–48.CrossRefGoogle Scholar
  19. 19.
    Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980;72:650–4.CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta J E, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02 Gaussian Inc. Wallingford CT. 2009.Google Scholar
  21. 21.
    Goodson DZ, Sarpal SK, Wolfsberg M. Influence on isotope effect calculations of the method of obtaining force constants from vibrational data. J Chem Phys. 1982;86:659–63.CrossRefGoogle Scholar
  22. 22.
    GaussView, Version 5.0.8, Dennington R, Keith T, Millam J. Semichem Inc., Shawnee Mission KS, 2000–2008.Google Scholar
  23. 23.
    Sundaraganesan N, Ilakiamani S, Joshua BD. FT-Raman and FT-IR spectra, ab initio and density functional studies of 2-amino-4,5-difluorobenzoic acid. Spectrochim Acta A. 2007;67:287–97.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • F. J. Caires
    • 1
  • L. S. Lima
    • 1
  • C. T. Carvalho
    • 2
  • A. B. Siqueira
    • 3
  • Oswaldo Treu-Filho
    • 1
  • M. Ionashiro
    • 1
  1. 1.Instituto de Química, UNESPAraraquaraBrazil
  2. 2.Universidade Federal da Grande Dourados, UFGDDouradosBrazil
  3. 3.Instituto de Ciências Exatas e da TerraCampus Pontal do Araguaia, UFMTRodoviaBrazil

Personalised recommendations