Journal of Thermal Analysis and Calorimetry

, Volume 109, Issue 3, pp 1387–1395 | Cite as

Adiabatic thermokinetics and process safety of pyrotechnic mixtures

Atom bomb, Chinese, and palm leaf crackers
  • Sridhar Vethathiri Pakkirisamy
  • Surianarayanan Mahadevan
  • Sivapirakasam Suthandathan Paramashivan
  • Asit Baran Mandal


Pyrotechnic mixtures are susceptible to explosive decompositions. The aim of this paper is to generate thermal decomposition data under adiabatic conditions for fireworks mixtures containing potassium nitrate, barium nitrate, sulfur, and aluminum which are manufactured on a commercial scale. Differential scanning calorimeter is used for screening tests and accelerating rate calorimeter is used for other studies. The self heat rate data obtained showed onset temperature in the range of 275–295 °C for the fireworks atom bomb, Chinese cracker and palm leaf cracker. Of the three mixtures studied, atom bomb mixture had an early onset at 275 °C. The mixtures in general showed vigor exothermic decompositions. Palm leaf mixture exhibits multiple exotherm and reached a final temperature of 414 °C. The thermal decomposition contributes to substantial rise in system pressure. The heats of exothermic decomposition and Arrhenius kinetics were computed. The kinetic data are validated by comparing the predicted self heat rates with the experimental data.


Pyrotechnic mixture Differential scanning calorimeter Accelerating rate calorimeter Self heat rate Thermal decomposition Heats of reaction 

List of symbols


Potassium nitrate




Barium nitrate






Temperature (°C)


Initial temperature (°C)


Final temperature (°C)


Heat of reaction (Cal g−1)


Thermal inertia


Mass of sample (g)


Mass of bomb (g)


Rate coefficient


Rate of temperature increase (°C min−1)


Pseudo rate constant


Activation energy (kJ mol−1)


Universal gas constant


Pre-exponential factor (s−1)


Threshold energy (Cal g−1)

\( \overline{C}_{\text{P}} \)

Average heat capacity (J g−1 K−1)

\( \overline{C}_{\text{ps}} \)

Average heat capacity of sample (J g−1 K−1)

\( \overline{C}_{\text{pB}} \)

Average heat capacity of bomb (J g−1 K−1)



The authors are thankful to Prof NR Rajagopal for his encouragement. One of the authors SVP thanks CSIR, New Delhi for SRF fellowship.


  1. 1.
    Sivapirakasam SP, Surianarayanan M, Venkataratnam GS and Nagaraj P. Hazard evaluation technique for Firework compositions. In: Indian Chemical Engineering Congress; 2003, p. 126.Google Scholar
  2. 2.
    Sivapirakasam SP, Surianarayanan M, Venkataratnam GS, Nagaraj P. Impact sensitiveness analysis of pyrotechnic flash compositions. J Pyrotech. 2005;21:52.Google Scholar
  3. 3.
    Ramu S. Hazard evaluation techniques and hazard evaluation criteria for composite propellants and explosives. In: Vikram Sarabhai Space Safety Symposium 1999, pp. 133–134.Google Scholar
  4. 4.
    Bowes R. Hazard analysis of pyrotechnic composition. In: Proceedings of 2nd international symposium on fireworks, Vancouver, Canada; 1994.Google Scholar
  5. 5.
    Herder G, Weterings FP, de Klerk WPC. Mechanical analysis on rocket propellants. J Therm Anal Calorim. 2003;72:921–929.CrossRefGoogle Scholar
  6. 6.
    Sivapirakasam SP, Surianarayanan M, Chandrasekran F. Thermal characterization of pyrotechnic flash compositions. Sci Tech Energetic Mater. 2010;71:1.Google Scholar
  7. 7.
    Sivapirakasam SP, Surianarayanan M, Vijayaraghavan R. Thermal characterization and kinetic modeling of a pyrotechnic flash composition under adiabatic conditions. J Pyrotech. 2006;23:61–66.Google Scholar
  8. 8.
    Lightfoot PD, Fouchard RC, Turcotte AM, Kwok QSM, Jones DEG. Thermal techniques used in the hazard evaluation of pyrotechnics. J Pyrotech. 2000;14:15.Google Scholar
  9. 9.
    Smith WD. Introductory chemistry for pyrotechnics. Atoms, molecules and their interactions. J Pyrotech. 1994;1:12–25.Google Scholar
  10. 10.
    Hou HY, Duh YS, Lee WL, Shu CM. Hazard evaluation for redox system of cumene hydroperoxide mixed with inorganic alkaline solutions. J Therm Anal Calorim. 2009;95(2):541–5.CrossRefGoogle Scholar
  11. 11.
    Roy M, Dave P, Barbar SK, Jangid S, Phase DM, Awasthi AM. X-ray, SEM and DSC studies of ferroelectric Pb1−xBaxTiO3 ceramics. J Therm Anal Calorim. 2010;101:833–7.CrossRefGoogle Scholar
  12. 12.
    Simoes RD, Rodriguez Perez MA, De Saja JA, Constantino CJL. Thermomechanical characterization of PVDF and P(VDF- TrFE) blends containing corn starch and natural rubber. J Therm Anal Calorim. 2010;99:621–9.CrossRefGoogle Scholar
  13. 13.
    Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimetry. Thermochem. Acta. 1980;37:1–30.CrossRefGoogle Scholar
  14. 14.
    Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.CrossRefGoogle Scholar
  15. 15.
    Chen JR, SH Wu, Lin SY, Hou HY, Shu CM. Utilization of microcalorimetry for an assessment of the potential for a runaway decomposition of cumene hydroperoxide at low temperatures. J Therm Anal Calorim. 2008;93:127–33.CrossRefGoogle Scholar
  16. 16.
    Hofelich TC, Thomas RC. The use/misuse of the 100 degree rule in the interpretation of thermal hazard tests. In Proceedings of the international symposium on runaway reactions, Ichem; AIChe; CCPS; 1989, pp. 74–85.Google Scholar
  17. 17.
    Surianarayanan M, Vijayaraghavan R, Swaminathan G, Rao PG. Microcalorimetry and its role in thermal hazard quantification. Curr Sci. 2001;6:738–47.Google Scholar
  18. 18.
    Badeen CM, Kwok OSM, Vachon MCR, Turcotte R, Jones DEG. Hazard characterization of mixtures of ammonium nitrate with the sodium salt of dichloroisocyanuric acid. J Therm Anal Calorim. 2005;81:225–233.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Sridhar Vethathiri Pakkirisamy
    • 1
  • Surianarayanan Mahadevan
    • 1
  • Sivapirakasam Suthandathan Paramashivan
    • 2
  • Asit Baran Mandal
    • 1
  1. 1.Thermochemical Lab, Chemical Engineering DepartmentCentral Leather Research Institute (CLRI)ChennaiIndia
  2. 2.Mechanical Engineering DepartmentNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations