Skip to main content
Log in

Adiabatic thermokinetics and process safety of pyrotechnic mixtures

Atom bomb, Chinese, and palm leaf crackers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrotechnic mixtures are susceptible to explosive decompositions. The aim of this paper is to generate thermal decomposition data under adiabatic conditions for fireworks mixtures containing potassium nitrate, barium nitrate, sulfur, and aluminum which are manufactured on a commercial scale. Differential scanning calorimeter is used for screening tests and accelerating rate calorimeter is used for other studies. The self heat rate data obtained showed onset temperature in the range of 275–295 °C for the fireworks atom bomb, Chinese cracker and palm leaf cracker. Of the three mixtures studied, atom bomb mixture had an early onset at 275 °C. The mixtures in general showed vigor exothermic decompositions. Palm leaf mixture exhibits multiple exotherm and reached a final temperature of 414 °C. The thermal decomposition contributes to substantial rise in system pressure. The heats of exothermic decomposition and Arrhenius kinetics were computed. The kinetic data are validated by comparing the predicted self heat rates with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

KNO3 :

Potassium nitrate

S:

Sulfur

BaNO3 :

Barium nitrate

Al:

Aluminum

C :

Concentration

T :

Temperature (°C)

T 0 :

Initial temperature (°C)

T F :

Final temperature (°C)

H :

Heat of reaction (Cal g−1)

ϕ:

Thermal inertia

m S :

Mass of sample (g)

m B :

Mass of bomb (g)

k :

Rate coefficient

m T :

Rate of temperature increase (°C min−1)

k*:

Pseudo rate constant

E :

Activation energy (kJ mol−1)

R :

Universal gas constant

A:

Pre-exponential factor (s−1)

ΔE :

Threshold energy (Cal g−1)

\( \overline{C}_{\text{P}} \) :

Average heat capacity (J g−1 K−1)

\( \overline{C}_{\text{ps}} \) :

Average heat capacity of sample (J g−1 K−1)

\( \overline{C}_{\text{pB}} \) :

Average heat capacity of bomb (J g−1 K−1)

References

  1. Sivapirakasam SP, Surianarayanan M, Venkataratnam GS and Nagaraj P. Hazard evaluation technique for Firework compositions. In: Indian Chemical Engineering Congress; 2003, p. 126.

  2. Sivapirakasam SP, Surianarayanan M, Venkataratnam GS, Nagaraj P. Impact sensitiveness analysis of pyrotechnic flash compositions. J Pyrotech. 2005;21:52.

    Google Scholar 

  3. Ramu S. Hazard evaluation techniques and hazard evaluation criteria for composite propellants and explosives. In: Vikram Sarabhai Space Safety Symposium 1999, pp. 133–134.

  4. Bowes R. Hazard analysis of pyrotechnic composition. In: Proceedings of 2nd international symposium on fireworks, Vancouver, Canada; 1994.

  5. Herder G, Weterings FP, de Klerk WPC. Mechanical analysis on rocket propellants. J Therm Anal Calorim. 2003;72:921–929.

    Article  CAS  Google Scholar 

  6. Sivapirakasam SP, Surianarayanan M, Chandrasekran F. Thermal characterization of pyrotechnic flash compositions. Sci Tech Energetic Mater. 2010;71:1.

    Google Scholar 

  7. Sivapirakasam SP, Surianarayanan M, Vijayaraghavan R. Thermal characterization and kinetic modeling of a pyrotechnic flash composition under adiabatic conditions. J Pyrotech. 2006;23:61–66.

    CAS  Google Scholar 

  8. Lightfoot PD, Fouchard RC, Turcotte AM, Kwok QSM, Jones DEG. Thermal techniques used in the hazard evaluation of pyrotechnics. J Pyrotech. 2000;14:15.

    Google Scholar 

  9. Smith WD. Introductory chemistry for pyrotechnics. Atoms, molecules and their interactions. J Pyrotech. 1994;1:12–25.

    Google Scholar 

  10. Hou HY, Duh YS, Lee WL, Shu CM. Hazard evaluation for redox system of cumene hydroperoxide mixed with inorganic alkaline solutions. J Therm Anal Calorim. 2009;95(2):541–5.

    Article  CAS  Google Scholar 

  11. Roy M, Dave P, Barbar SK, Jangid S, Phase DM, Awasthi AM. X-ray, SEM and DSC studies of ferroelectric Pb1−x Ba x TiO3 ceramics. J Therm Anal Calorim. 2010;101:833–7.

    Article  CAS  Google Scholar 

  12. Simoes RD, Rodriguez Perez MA, De Saja JA, Constantino CJL. Thermomechanical characterization of PVDF and P(VDF- TrFE) blends containing corn starch and natural rubber. J Therm Anal Calorim. 2010;99:621–9.

    Article  CAS  Google Scholar 

  13. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimetry. Thermochem. Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  14. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  15. Chen JR, SH Wu, Lin SY, Hou HY, Shu CM. Utilization of microcalorimetry for an assessment of the potential for a runaway decomposition of cumene hydroperoxide at low temperatures. J Therm Anal Calorim. 2008;93:127–33.

    Article  CAS  Google Scholar 

  16. Hofelich TC, Thomas RC. The use/misuse of the 100 degree rule in the interpretation of thermal hazard tests. In Proceedings of the international symposium on runaway reactions, Ichem; AIChe; CCPS; 1989, pp. 74–85.

  17. Surianarayanan M, Vijayaraghavan R, Swaminathan G, Rao PG. Microcalorimetry and its role in thermal hazard quantification. Curr Sci. 2001;6:738–47.

    Google Scholar 

  18. Badeen CM, Kwok OSM, Vachon MCR, Turcotte R, Jones DEG. Hazard characterization of mixtures of ammonium nitrate with the sodium salt of dichloroisocyanuric acid. J Therm Anal Calorim. 2005;81:225–233.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof NR Rajagopal for his encouragement. One of the authors SVP thanks CSIR, New Delhi for SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surianarayanan Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakkirisamy, S.V., Mahadevan, S., Paramashivan, S.S. et al. Adiabatic thermokinetics and process safety of pyrotechnic mixtures. J Therm Anal Calorim 109, 1387–1395 (2012). https://doi.org/10.1007/s10973-011-1824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1824-y

Keywords

Navigation