Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 1093–1103 | Cite as

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient

  • Soumya Sarkar
  • Probal Kr. Das


Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (E a), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.


Carbon nanotube TG Non-isothermal kinetics Model-fitting Isoconversional Electron microscopy 



The authors express their sincere gratitude to the Director, Central Glass and Ceramic Research Institute (CG & CRI), India for his kind permission to publish this study. The authors are also grateful to the members of Analytical Facility Division and Materials Characterization Unit of CG & CRI, India for their extensive help in carrying out all the TEM analysis and TG experiments, respectively. The first author acknowledges the financial support of the Council of Scientific and Industrial Research (CSIR), India.


  1. 1.
    Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res. 2003;33:419–501.CrossRefGoogle Scholar
  2. 2.
    Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630–41.CrossRefGoogle Scholar
  3. 3.
    Samal SS, Bal S. Carbon nanotube reinforced ceramic matrix composites—a review. J Miner Mater Character Eng. 2008;7(4):355–70.Google Scholar
  4. 4.
    Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites–a review. Int Mater Rev. 2010;55(1):41–64.CrossRefGoogle Scholar
  5. 5.
    Song W-l, Cao M-S, Hou Z-l, Yuan J, Fang X-Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr Mater. 2009;61:201–4.CrossRefGoogle Scholar
  6. 6.
    Chen Z-K, Yang J-P, Ni Q-Q, Fu S-Y, Huang Y-G. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer. 2009;50:4753–9.CrossRefGoogle Scholar
  7. 7.
    Illeková E, Csomorová K. Kinetics of oxidation in various forms of carbon. J Therm Anal Calorim. 2005;80:103–8.CrossRefGoogle Scholar
  8. 8.
    Brukh R, Mitra S. Kinetics of carbon nanotube oxidation. J Mater Chem. 2007;17:619–23.CrossRefGoogle Scholar
  9. 9.
    Vignes A, Dufaud O, Perrin L, Thomas D, Bouillard J, Janès A, et al. Thermal ignition and self-heating of carbon nanotubes: from thermokinetic study to process safety. Chem Eng Sci. 2009;64:4210–21.CrossRefGoogle Scholar
  10. 10.
    Sarkar S, Das PK, Bysakh S, Dasgupta K. Evaluation of thermal stability of commercial multiwalled carbon nanotubes. First Asian Carbon Conference, New Delhi, 2009.Google Scholar
  11. 11.
    Sarkar S, Das PK, Bysakh S. Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes. Mater Chem Phys. 2011;125:161–7.CrossRefGoogle Scholar
  12. 12.
    Al-Othman AA, Al-Farhan KA, Mahfouz RM. Kinetic analysis of nonisothermal decomposition of (Mg5(CO3)4(OH)2·4H2O/5Cr2O3) crystalline mixture. J King Saud Univ (Sci). 2009;21:133–43.CrossRefGoogle Scholar
  13. 13.
    Janković B, Mentus S, Jelic D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Physica B. 2009;404:2263–9.CrossRefGoogle Scholar
  14. 14.
    Boonchom B, Danvirutai C, Thongkam M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim. 2010;99:357–62.CrossRefGoogle Scholar
  15. 15.
    Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.CrossRefGoogle Scholar
  16. 16.
    Jiao-qiang Z, Hong-xu G, Li-hong S, Rong-zu H, Feng-qi Z, Bo-zhou W. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT). J Hazard Mater. 2009;167:205–8.CrossRefGoogle Scholar
  17. 17.
    Wang Y-F, Liu J-F, Xian H-D, Zhao G-L. Synthesis, crystal structure, and kinetics of the thermal decomposition of the nickel(ii) complex of the Schiff base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules. 2009;14:2582–93.CrossRefGoogle Scholar
  18. 18.
    Chen Y, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stabil. 2007;92:280–91.CrossRefGoogle Scholar
  19. 19.
    Doğan F, Kaya I, Bilici A. Non-isothermal degradation kinetics of poly (2,2′-dihydroxybiphenyl). Polym Bull. 2009;63:267–82.CrossRefGoogle Scholar
  20. 20.
    Doğan F, Kaya I, Bilici A, Saçak M. Thermal decomposition kinetics of azomethine oligomer and its some metal complexes. J Appl Polym Sci. 2010;118:547–56.Google Scholar
  21. 21.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project-the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S. Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?” Thermochim Acta. 2003;397:269–71.Google Scholar
  24. 24.
    Pratap A, Rao TLS, Lad KN, Dhurandhar HD. Isoconversional vs. model fitting methods: a case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calorim. 2007;89:399–405.CrossRefGoogle Scholar
  25. 25.
    Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.CrossRefGoogle Scholar
  26. 26.
    Janković B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139:128–35.CrossRefGoogle Scholar
  27. 27.
    Galwey AK. What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? Thermochim Acta. 2003;397:249–68.CrossRefGoogle Scholar
  28. 28.
    Janković B, Adnaðević B, Jovanović J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis, Thermochim Acta. 2007;452:106–15.Google Scholar
  29. 29.
    Pourghahramani P, Forssberg E. Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods. Thermochim Acta. 2007;454:69–77.CrossRefGoogle Scholar
  30. 30.
    Serra R, Nomen R, Sempere J. The non-parametric kinetics: a new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.CrossRefGoogle Scholar
  31. 31.
    Serra R, Nomen R, Sempere J. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.CrossRefGoogle Scholar
  32. 32.
    Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim Acta. 1989;147:377–85.CrossRefGoogle Scholar
  33. 33.
    Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stabil. 2007;92:1265–78.CrossRefGoogle Scholar
  34. 34.
    Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRefGoogle Scholar
  35. 35.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–9.CrossRefGoogle Scholar
  36. 36.
    Flynn JH. The ‘temperature integral’: its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRefGoogle Scholar
  37. 37.
    Tesner PA. The activation energy of gas reactions with solid carbon. Eight International Symposium on Combustion, Williams & Wilkins Co., Baltimore, USA, 1962, pp. 807–13; Discussion by Essenhigh RH. pp. 813–14.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Non-oxide Ceramic and Composite DivisionCentral Glass and Ceramic Research Institute (CSIR)KolkataIndia

Personalised recommendations