Skip to main content
Log in

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (E a), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res. 2003;33:419–501.

    Article  CAS  Google Scholar 

  2. Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630–41.

    Article  CAS  Google Scholar 

  3. Samal SS, Bal S. Carbon nanotube reinforced ceramic matrix composites—a review. J Miner Mater Character Eng. 2008;7(4):355–70.

    Google Scholar 

  4. Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites–a review. Int Mater Rev. 2010;55(1):41–64.

    Article  CAS  Google Scholar 

  5. Song W-l, Cao M-S, Hou Z-l, Yuan J, Fang X-Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr Mater. 2009;61:201–4.

    Article  CAS  Google Scholar 

  6. Chen Z-K, Yang J-P, Ni Q-Q, Fu S-Y, Huang Y-G. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer. 2009;50:4753–9.

    Article  CAS  Google Scholar 

  7. Illeková E, Csomorová K. Kinetics of oxidation in various forms of carbon. J Therm Anal Calorim. 2005;80:103–8.

    Article  Google Scholar 

  8. Brukh R, Mitra S. Kinetics of carbon nanotube oxidation. J Mater Chem. 2007;17:619–23.

    Article  CAS  Google Scholar 

  9. Vignes A, Dufaud O, Perrin L, Thomas D, Bouillard J, Janès A, et al. Thermal ignition and self-heating of carbon nanotubes: from thermokinetic study to process safety. Chem Eng Sci. 2009;64:4210–21.

    Article  CAS  Google Scholar 

  10. Sarkar S, Das PK, Bysakh S, Dasgupta K. Evaluation of thermal stability of commercial multiwalled carbon nanotubes. First Asian Carbon Conference, New Delhi, 2009.

  11. Sarkar S, Das PK, Bysakh S. Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes. Mater Chem Phys. 2011;125:161–7.

    Article  CAS  Google Scholar 

  12. Al-Othman AA, Al-Farhan KA, Mahfouz RM. Kinetic analysis of nonisothermal decomposition of (Mg5(CO3)4(OH)2·4H2O/5Cr2O3) crystalline mixture. J King Saud Univ (Sci). 2009;21:133–43.

    Article  Google Scholar 

  13. Janković B, Mentus S, Jelic D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Physica B. 2009;404:2263–9.

    Article  Google Scholar 

  14. Boonchom B, Danvirutai C, Thongkam M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim. 2010;99:357–62.

    Article  CAS  Google Scholar 

  15. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  16. Jiao-qiang Z, Hong-xu G, Li-hong S, Rong-zu H, Feng-qi Z, Bo-zhou W. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT). J Hazard Mater. 2009;167:205–8.

    Article  Google Scholar 

  17. Wang Y-F, Liu J-F, Xian H-D, Zhao G-L. Synthesis, crystal structure, and kinetics of the thermal decomposition of the nickel(ii) complex of the Schiff base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules. 2009;14:2582–93.

    Article  CAS  Google Scholar 

  18. Chen Y, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stabil. 2007;92:280–91.

    Article  CAS  Google Scholar 

  19. Doğan F, Kaya I, Bilici A. Non-isothermal degradation kinetics of poly (2,2′-dihydroxybiphenyl). Polym Bull. 2009;63:267–82.

    Article  Google Scholar 

  20. Doğan F, Kaya I, Bilici A, Saçak M. Thermal decomposition kinetics of azomethine oligomer and its some metal complexes. J Appl Polym Sci. 2010;118:547–56.

    Google Scholar 

  21. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  22. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project-the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  23. Vyazovkin S. Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?” Thermochim Acta. 2003;397:269–71.

    Google Scholar 

  24. Pratap A, Rao TLS, Lad KN, Dhurandhar HD. Isoconversional vs. model fitting methods: a case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calorim. 2007;89:399–405.

    Article  CAS  Google Scholar 

  25. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  26. Janković B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139:128–35.

    Article  Google Scholar 

  27. Galwey AK. What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? Thermochim Acta. 2003;397:249–68.

    Article  CAS  Google Scholar 

  28. Janković B, Adnaðević B, Jovanović J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis, Thermochim Acta. 2007;452:106–15.

    Google Scholar 

  29. Pourghahramani P, Forssberg E. Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods. Thermochim Acta. 2007;454:69–77.

    Article  CAS  Google Scholar 

  30. Serra R, Nomen R, Sempere J. The non-parametric kinetics: a new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  31. Serra R, Nomen R, Sempere J. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  32. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  33. Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stabil. 2007;92:1265–78.

    Article  CAS  Google Scholar 

  34. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  35. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–9.

    Article  Google Scholar 

  36. Flynn JH. The ‘temperature integral’: its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  37. Tesner PA. The activation energy of gas reactions with solid carbon. Eight International Symposium on Combustion, Williams & Wilkins Co., Baltimore, USA, 1962, pp. 807–13; Discussion by Essenhigh RH. pp. 813–14.

Download references

Acknowledgements

The authors express their sincere gratitude to the Director, Central Glass and Ceramic Research Institute (CG & CRI), India for his kind permission to publish this study. The authors are also grateful to the members of Analytical Facility Division and Materials Characterization Unit of CG & CRI, India for their extensive help in carrying out all the TEM analysis and TG experiments, respectively. The first author acknowledges the financial support of the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Probal Kr. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Das, P.K. Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient. J Therm Anal Calorim 107, 1093–1103 (2012). https://doi.org/10.1007/s10973-011-1797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1797-x

Keywords

Navigation