Skip to main content
Log in

Thermal expansion and heat capacity measurements on Ba10−x Cs x (PO4)6Cl2−δ, (x = 0, 0.5) chloroapatites synthesized by sonochemical process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ba10−x Cs x (PO4)6Cl2, (x = 0, 0.5) chloroapatite ceramics were prepared by sonochemical method of synthesis. The measured room temperature lattice parameters of Ba10 (PO4)6Cl2 and Ba9.5Cs0.5 (PO4)6Cl2−δ are practically the same; that is, a = 10.26 (8), c = 7.65 (7) and a = 10.27 (7), c = 7.65 (5), respectively. Heat capacity measurements were carried out on these materials by differential scanning calorimetry (DSC) in the temperature range 298–800 K. The heat capacity values of Ba9.5Cs0.5(PO4)6Cl2−δ are found to be slightly higher at all temperatures than those of Ba10(PO4)6Cl2. From the heat capacity data, other thermodynamic functions such as enthalpy and entropy increments were computed. The heat capacity values of Ba10(PO4)6Cl2 and Ba9.5Cs0.5(PO4)6Cl2−δ at 298 K are 0.3912 and 0.4310 J K−1 g−1, respectively. Thermal expansion property of the doped and undoped barium chloroapatites was measured by using a home built dilatometer which uses LVDT as displacement sensor. The bulk thermal expansion of Ba10(PO4)Cl2 and Ba9.5Cs0.5(PO4)Cl2−δ is observed to be about 0.9% in the temperature range of 298–973 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang YI. The integral fast reactor. Nucl Technol. 1989;88:129–38.

    CAS  Google Scholar 

  2. Trocellier P. Immobilization of radionuclides in single-phase crystalline waste forms: a review on their intrinsic properties and long term behaviour. Ann Chim Sci Mat. 2000;25:321–7.

    Article  CAS  Google Scholar 

  3. Nriagu JO. Lead orthophosphates-IV. Formation and stability in the environment. Geochim Cosmochim Acta. 1974;38:887–98.

    Article  CAS  Google Scholar 

  4. Ioiţescu A, Vlase G, Vlase T, Ilia G, Doca N. Synthesis and characterization of hydroxyapatite obtained from different organic precursors by sol–gel method. J Therm Anal Calorim. 2009;96(3):937–42.

    Article  Google Scholar 

  5. Mezahi FZ, Oudadesse H, Harabi A, Lucas-Girot A, Gal YL, Chaair H, Cathelineau G. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. Comparison to synthetic hydroxyapatite. J Therm Anal Calorim. 2009;95(1):21–9.

    Article  CAS  Google Scholar 

  6. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G. Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim. 2007;88(1):237–43.

    Article  CAS  Google Scholar 

  7. Wei M, Evans JH, Bostrom T, Grøndahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14(4):311–20.

    Article  CAS  Google Scholar 

  8. Fleet ME, Pan Y. Site preference of Nd in fluorapatite [Ca10(PO4)6F2]. J Solid State Chem. 1994;112:78–81.

    Article  CAS  Google Scholar 

  9. Simon FG, Biermann V, Segebade C, Hedrich M. Behaviour of uranium in hydroxyapatite-bearing permeable reactive barriers: investigation using 237U as a radioindicator. Sci Total Environ. 2004;326(1–3):249–56.

    CAS  Google Scholar 

  10. Moore RC, Gasser M, Awwad N, Holt CK, Salas MF, Hasan A, Hasan M, Zhao H, Sanchez CA. Sorption of plutonium(VI) by hydroxyapatite. J Radioanal Nucl Chem. 2005;263:97–101.

    Article  CAS  Google Scholar 

  11. Venkat Krishnan R, Jena H, Kutty KVG, Nagarajan K. Heat capacity of Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2 by DSC. Thermochim Acta. 2008;478:13–6.

    Article  Google Scholar 

  12. Jena H, Asuvathraman R, Kutty KVG. Alkaline earth chlorappatite glass-ceramics as caesium host matrices. In: Nigam S et al., editor. Proceedings of 2nd DAE-BRNS international symposium on materials chemistry; 2008 Dec 2–6: Mumbai, A-27, p. 75.

  13. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.

    CAS  Google Scholar 

  14. Venkata Krishnan R, Nagarajan K. Heat capacity measurements on uranium–cerium mixed oxides by differential scanning calorimetry. Thermochim Acta. 2006;440:141–5.

    Article  CAS  Google Scholar 

  15. Hata M, Marumo F, Iwai S, Aoki H. Structure of barium chlorapatite. Acta Crystall B-stru. 1979;B35:2382–4.

    Article  CAS  Google Scholar 

  16. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.

    CAS  Google Scholar 

  17. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals. A review study on the analytical methods. J Biomed Mater Res. 2002;62:600–12.

    Article  CAS  Google Scholar 

  18. Yu H, Zhang H, Wang X, Gu Z, Li X, Deng F. Local structure of hydroxy–peroxy apatite: a combined XRD, FT-IR, Raman, SEM, and solid-state NMR study. J Phys Chem Solids. 2007;68:1863–71.

    Article  CAS  Google Scholar 

  19. Venkata Krishnan R, Panneerselvam G, Manikandan P, Antony MP, Nagarajan K. Heat capacity and thermal expansion of uranium–gadolinium mixed oxides. J Nucl Radiochem Sci. 2009;10(1):19–26.

    Google Scholar 

  20. Inaba H, Naito K, Oguma M. Heat capacity measurement of U1−y Gd y O2 (0.00 ≤ y ≤ 0.142) from 310 to 1500 K. J Nucl Mater. 1987;149:341–8.

    Article  CAS  Google Scholar 

  21. Arita Y, Matsui T, Hamada S. High temperature heat capacities of (U0.91 M0.09)O2 (where M is Pr, Ce, Zr) from 290 to 1410 K. Thermochim Acta. 1995;253:1–9.

    Article  CAS  Google Scholar 

  22. Matsui T, Kawase T, Naito K. Heat capacities and electrical conductivities of U1−y Eu y O2 (y = 0.044 and 0.090) from 300 to 1550 K. J Nucl Mater. 1550;186:254–8.

    Article  Google Scholar 

  23. Matsui T, Arita Y, Naito K. High temperature heat capacities and electrical conductivities of UO2 doped with yttrium and simulated fission products. J Nucl Mater. 1992;188:205–9.

    Article  CAS  Google Scholar 

  24. Jena H, Asuvathraman R, Kutty KVG. Thermal expansion and phase stability investigations on Cs-substituted nanocrystalline calcium hydroxyapatites. J Mater Eng Perform. 2011;20(1):108–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrudananda Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, H., Venkata Krishnan, R., Asuvathraman, R. et al. Thermal expansion and heat capacity measurements on Ba10−x Cs x (PO4)6Cl2−δ, (x = 0, 0.5) chloroapatites synthesized by sonochemical process. J Therm Anal Calorim 106, 875–879 (2011). https://doi.org/10.1007/s10973-011-1715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1715-2

Keywords

Navigation