Journal of Thermal Analysis and Calorimetry

, Volume 106, Issue 3, pp 875–879 | Cite as

Thermal expansion and heat capacity measurements on Ba10−x Cs x (PO4)6Cl2−δ, (x = 0, 0.5) chloroapatites synthesized by sonochemical process

  • Hrudananda Jena
  • R. Venkata Krishnan
  • R. Asuvathraman
  • K. Nagarajan
  • K. V. Govindan Kutty


Ba10−x Cs x (PO4)6Cl2, (x = 0, 0.5) chloroapatite ceramics were prepared by sonochemical method of synthesis. The measured room temperature lattice parameters of Ba10 (PO4)6Cl2 and Ba9.5Cs0.5 (PO4)6Cl2−δ are practically the same; that is, a = 10.26 (8), c = 7.65 (7) and a = 10.27 (7), c = 7.65 (5), respectively. Heat capacity measurements were carried out on these materials by differential scanning calorimetry (DSC) in the temperature range 298–800 K. The heat capacity values of Ba9.5Cs0.5(PO4)6Cl2−δ are found to be slightly higher at all temperatures than those of Ba10(PO4)6Cl2. From the heat capacity data, other thermodynamic functions such as enthalpy and entropy increments were computed. The heat capacity values of Ba10(PO4)6Cl2 and Ba9.5Cs0.5(PO4)6Cl2−δ at 298 K are 0.3912 and 0.4310 J K−1 g−1, respectively. Thermal expansion property of the doped and undoped barium chloroapatites was measured by using a home built dilatometer which uses LVDT as displacement sensor. The bulk thermal expansion of Ba10(PO4)Cl2 and Ba9.5Cs0.5(PO4)Cl2−δ is observed to be about 0.9% in the temperature range of 298–973 K.


Heat capacity Barium chloroapatite X-ray diffraction Dilatometry Thermal expansion 


  1. 1.
    Chang YI. The integral fast reactor. Nucl Technol. 1989;88:129–38.Google Scholar
  2. 2.
    Trocellier P. Immobilization of radionuclides in single-phase crystalline waste forms: a review on their intrinsic properties and long term behaviour. Ann Chim Sci Mat. 2000;25:321–7.CrossRefGoogle Scholar
  3. 3.
    Nriagu JO. Lead orthophosphates-IV. Formation and stability in the environment. Geochim Cosmochim Acta. 1974;38:887–98.CrossRefGoogle Scholar
  4. 4.
    Ioiţescu A, Vlase G, Vlase T, Ilia G, Doca N. Synthesis and characterization of hydroxyapatite obtained from different organic precursors by sol–gel method. J Therm Anal Calorim. 2009;96(3):937–42.CrossRefGoogle Scholar
  5. 5.
    Mezahi FZ, Oudadesse H, Harabi A, Lucas-Girot A, Gal YL, Chaair H, Cathelineau G. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. Comparison to synthetic hydroxyapatite. J Therm Anal Calorim. 2009;95(1):21–9.CrossRefGoogle Scholar
  6. 6.
    Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G. Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim. 2007;88(1):237–43.CrossRefGoogle Scholar
  7. 7.
    Wei M, Evans JH, Bostrom T, Grøndahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14(4):311–20.CrossRefGoogle Scholar
  8. 8.
    Fleet ME, Pan Y. Site preference of Nd in fluorapatite [Ca10(PO4)6F2]. J Solid State Chem. 1994;112:78–81.CrossRefGoogle Scholar
  9. 9.
    Simon FG, Biermann V, Segebade C, Hedrich M. Behaviour of uranium in hydroxyapatite-bearing permeable reactive barriers: investigation using 237U as a radioindicator. Sci Total Environ. 2004;326(1–3):249–56.Google Scholar
  10. 10.
    Moore RC, Gasser M, Awwad N, Holt CK, Salas MF, Hasan A, Hasan M, Zhao H, Sanchez CA. Sorption of plutonium(VI) by hydroxyapatite. J Radioanal Nucl Chem. 2005;263:97–101.CrossRefGoogle Scholar
  11. 11.
    Venkat Krishnan R, Jena H, Kutty KVG, Nagarajan K. Heat capacity of Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2 by DSC. Thermochim Acta. 2008;478:13–6.CrossRefGoogle Scholar
  12. 12.
    Jena H, Asuvathraman R, Kutty KVG. Alkaline earth chlorappatite glass-ceramics as caesium host matrices. In: Nigam S et al., editor. Proceedings of 2nd DAE-BRNS international symposium on materials chemistry; 2008 Dec 2–6: Mumbai, A-27, p. 75.Google Scholar
  13. 13.
    Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.Google Scholar
  14. 14.
    Venkata Krishnan R, Nagarajan K. Heat capacity measurements on uranium–cerium mixed oxides by differential scanning calorimetry. Thermochim Acta. 2006;440:141–5.CrossRefGoogle Scholar
  15. 15.
    Hata M, Marumo F, Iwai S, Aoki H. Structure of barium chlorapatite. Acta Crystall B-stru. 1979;B35:2382–4.CrossRefGoogle Scholar
  16. 16.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.Google Scholar
  17. 17.
    Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals. A review study on the analytical methods. J Biomed Mater Res. 2002;62:600–12.CrossRefGoogle Scholar
  18. 18.
    Yu H, Zhang H, Wang X, Gu Z, Li X, Deng F. Local structure of hydroxy–peroxy apatite: a combined XRD, FT-IR, Raman, SEM, and solid-state NMR study. J Phys Chem Solids. 2007;68:1863–71.CrossRefGoogle Scholar
  19. 19.
    Venkata Krishnan R, Panneerselvam G, Manikandan P, Antony MP, Nagarajan K. Heat capacity and thermal expansion of uranium–gadolinium mixed oxides. J Nucl Radiochem Sci. 2009;10(1):19–26.Google Scholar
  20. 20.
    Inaba H, Naito K, Oguma M. Heat capacity measurement of U1−yGdyO2 (0.00 ≤ y ≤ 0.142) from 310 to 1500 K. J Nucl Mater. 1987;149:341–8.CrossRefGoogle Scholar
  21. 21.
    Arita Y, Matsui T, Hamada S. High temperature heat capacities of (U0.91 M0.09)O2 (where M is Pr, Ce, Zr) from 290 to 1410 K. Thermochim Acta. 1995;253:1–9.CrossRefGoogle Scholar
  22. 22.
    Matsui T, Kawase T, Naito K. Heat capacities and electrical conductivities of U1−yEuyO2 (y = 0.044 and 0.090) from 300 to 1550 K. J Nucl Mater. 1550;186:254–8.CrossRefGoogle Scholar
  23. 23.
    Matsui T, Arita Y, Naito K. High temperature heat capacities and electrical conductivities of UO2 doped with yttrium and simulated fission products. J Nucl Mater. 1992;188:205–9.CrossRefGoogle Scholar
  24. 24.
    Jena H, Asuvathraman R, Kutty KVG. Thermal expansion and phase stability investigations on Cs-substituted nanocrystalline calcium hydroxyapatites. J Mater Eng Perform. 2011;20(1):108–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Hrudananda Jena
    • 1
  • R. Venkata Krishnan
    • 1
  • R. Asuvathraman
    • 1
  • K. Nagarajan
    • 1
  • K. V. Govindan Kutty
    • 1
  1. 1.Chemistry GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations